scholarly journals Coenzime Q10. Comparative Study Active Substance versus Pharmaceuticals Products

2018 ◽  
Vol 69 (11) ◽  
pp. 3221-3224
Author(s):  
Cristina Buciuman ◽  
Eleonora Marian ◽  
Bogdan Tita ◽  
Tunde Jurca ◽  
Adriana Chis ◽  
...  

Coenzyme Q10 is a molecule which shows promising properties in the prevention and treatment of different disorders. It is mostly found in dietary supplements together with different excipients and other lipophilic vitamins that can influence the release profile of the active substance. This influence is due to the possible interaction of the active substance with the excipients present in the drug composition. In this regard, this paper presents a comparative study between coenzyme Q10 - active substance and three of the corresponding pharmaceutical products: P1, P2 and P3. The four compounds were characterized simultaneously by thermal analysis, FT-IR spectroscopy and X-ray powder diffraction patterns.

2017 ◽  
Vol 68 (10) ◽  
pp. 2307-2310
Author(s):  
Ioana Cristina Tita ◽  
Bogdan Tita ◽  
Claudia Crina Toma ◽  
Eleonora Marian ◽  
Laura Vicas

G/DTG and DSC curves provide important information regarding the physical properties of the pharmaceutical compounds (stability, compatibility, polymorphism, kinetic analysis, phase transitions etc). The thermal behaviour of valsartan was studied under dynamic nitrogen atmosphere, in comparison with pharmaceutical products containing the corresponding active substances. Also, the FT�IR spectra and X-ray diffactogram of the same samples were recorded. The main conclusion of this comparative study was that TG / DTG and DSC assays along with FT-IR spectra and X-ray diffractograms provide credible data for differences between active substance and pharmaceutical forms.


2017 ◽  
Vol 68 (8) ◽  
pp. 1895-1902
Author(s):  
Ioana Cristina Tita ◽  
Eleonora Marian ◽  
Bogdan Tita ◽  
Claudia Crina Toma ◽  
Laura Vicas

Thermal analysis is one of the most frequently used instrumental techniques in the pharmaceutical research, for the thermal characterization of different materials from solids to semi-solids, which are of pharmaceutical relevance. In this paper, simultaneous thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) were used for characterization of the thermal behaviour of candesartan cilexetil � active substance (C-AS) under dynamic nitrogen atmosphere and nonisothermal conditions, in comparison with pharmaceutical product containing the corresponding active substance. It was observed that the commercial samples showed a different thermal profile than the standard sample, caused by the presence of excipients in the pharmaceutical product and to possible interaction of these with the active substance. The Fourier transformed infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRPD) were used as complementary techniques adequately implement and assist in interpretation of the thermal results. The main conclusion of this comparative study was that the TG/DTG and DSC curves, together with the FT-IR spectra, respectively X-ray difractograms constitute believe data for the discrimination between the pure substance and pharmaceutical forms.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2020 ◽  
Vol 18 (1) ◽  
pp. 399-411
Author(s):  
Eman Alzahrani

AbstractA unique method was used to synthesize extremely stable silver stearate nanoparticles (AgStNPs) incorporated in an organic-based monolith. The facile strategy was then used to selectively isolate hemeproteins, myoglobin (Myo) and hemoglobin (Hb). Ethyl alcohol, silver nitrate, and stearic acid were, respectively, utilized as reducing agents, silver precursors, and capping agents. The color changed to cloudy from transparent, indicating that AgStNPs had been formed. AgStNP nanostructures were then distinctly integrated into the natural polymeric scaffold. To characterize the AgStNP–methacrylate polymeric monolith and the silver nanoparticles, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and Fourier-transform infrared (FT-IR) spectroscopy were used. The results of the SEM analysis indicated that the AgStNP–methacrylate polymeric monolith’s texture was so rough in comparison with that of the methacrylate polymeric monolith, indicating that the extraction process of the monolith materials would be more efficient because of the extended surface area of the absorbent. The comparison between the FT-IR spectra of AgStNPs, the bare organic monolith, and AgStNP–methacrylate polymeric monolith confirms that the AgStNPs were immobilized on the surface of the organic monolith. The EDX profile of the built materials indicated an advanced peak of the Ag sequence which represented an Ag atom of 3.27%. The results therefore established that the AgStNPs had been successfully integrated into the monolithic materials. Extraction efficiencies of 92% and 97% were used to, respectively, recover preconcentrated Myo and Hb. An uncomplicated method is a unique approach of both fabrication and utilization of the nanosorbent to selectively isolate hemeproteins. The process can further be implemented by using other noble metals.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2017 ◽  
Author(s):  
◽  
Sharista Raghunath

The presence of dyes in effluent poses various environmental as well as health hazards for many organisms. Although various remediation strategies have been implemented to reduce their effect, dyes still manage to infiltrate into the environment and hence new strategies are required to address some of the problems. This study investigated the innovation of two cationic water-soluble polymers viz., Proline-Epichlorohydrin-Ethylenediamine Polymer (PEP) and Thiazolidine-Epichlorohydrin-Ethylenediamine Polymer (TEP) that were used to remediate selected synthetic dyes from synthetic effluent by adsorption and dye reduction. Both polymers were synthesized using monomers of a secondary amine, epichlorohydrin and ethylenediamine and were subsequently characterized and modified and their remediation potential studied. In the first study, PEP was synthesized and characterized by 1H-NMR Spectroscopy, FT-IR Spectroscopy, dynamic light scattering, and thermogravimetric analysis (TGA). Thereafter PEP was modified with bentonite clay, by simple mixing of the reactants, to form a Proline-Epichlorohydrin-Ethylenediamine Polymer-bentonite composite (PRO-BEN); it was characterized by FT-IR Spectroscopy, scanning electron microscopy (SEM)/ energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Adsorption studies were then undertaken with a synthetic effluent containing three textile dyes, viz., Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow (RY 145). Various conditions were investigated including pH of the solution, temperature, sodium chloride concentration, initial dye concentration and the dosage of adsorbent used. The experimental data for all dyes followed a Langmuir isotherm. The adsorption process was found to be pseudo-second order. According to the thermodynamic parameters, the adsorption of the dyes was classified as physisorption and the reaction was spontaneous and exothermic. The data were also compared using studies with alumina as an adsorbent. Results showed that PRO-BEN exhibited better absorptivity and desorption than alumina making its use a better recyclable remediation strategy for the removal of organic dyes in wastewater treatment plants. In the second study, TEP was synthesized and then characterized by FT-IR Spectroscopy, 1H-NMR Spectroscopy, TGA and DLS. Thereafter, TEP was used to prepare TEP capped gold nanoparticles (TEP-AuNPs). Herein, two methods were investigated: the Turkevich method and an adaptation of the Turkevich method using bagasse extract. The TEP-AuNPs was characterized by FT-IR Spectroscopy, SEM, EDX, DLS and TEM. Thereafter the reduction of each of Allura Red, Congo Red and Methylene Blue was investigated with the TEP-AuNPs for its catalytic activity toward dye reduction. This study showed that the batch of AuNPs prepared by the Turkevich method had higher rates of dye reduction compared with AuNPs prepared using bagasse extract. Also the quantity of TEP used as capping agent greatly influenced the size, shape and surface charge of the nanoparticles as well as their catalytic performance: the Vroman effect explained this behavior of the TEP-AuNPs. It was finally concluded that whilst PRO-BEN, in the first study, showed excellent dye remediation properties, the second study on TEP-AuNPs showed good catalytic activity for the reduction of selected dyes, however, it was more effective at lower polymer concentration. Finally, both materials displayed good potential for the clean-up of selected synthetic dyes from synthetic effluents.


2020 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Azwan Morni

This study reports a green method for the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of Salix aegyptiaca extract. The effects of gold salt concentration, extract concentration and extract quantity were investigated on nanoparticles synthesis. Novel methods of ideally synthesizing AuNPs are thus thought that are formed at ambient temperatures, neutral pH, low costs and environmentally friendly fashion. AuNPs were characterized with different techniques such as UV–vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, and TEM. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary carbonyl group, -OH groups and other stabilizing functional groups. TEM experiments showed that these nanoparticles are formed with various shapes and X-ray diffraction pattern showed high purity and face centered cubic structure of AuNPs. For electrochemical properties of AuNPs, a modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated. The results show that electronic transmission rate between the modified electrode and [Fe (CN)6]3-/4- increased.


Author(s):  
Dubravka Krilov ◽  
Maja Balarin ◽  
Marin Kosović ◽  
Ozren Gamulin ◽  
Jasminka Brnjas-Kraljević

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 115 ◽  
Author(s):  
Deeb Abu Fara ◽  
Linda Al-Hmoud ◽  
Iyad Rashid ◽  
Babur Z. Chowdhry ◽  
Adnan Badwan

Chitin has been investigated in the context of finding new excipients suitable for direct compression, when subjected to roller compaction. Ball milling was concurrently carried out to compare effects from different energy or stress-inducing techniques. Samples of chitin powders (raw, processed, dried and humidified) were compared for variations in morphology, X-ray diffraction patterns, densities, FT-IR, flowability, compressibility and compactibility. Results confirmed the suitability of roller compaction to convert the fluffy powder of raw chitin to a bulky material with improved flow. X-ray powder diffraction studies showed that, in contrast to the high decrease in crystallinity upon ball milling, roller compaction manifested a slight deformation in the crystal lattice. Moreover, the new excipient showed high resistance to compression, due to the high compactibility of the granules formed. This was correlated to the significant extent of plastic deformation compared to the raw and ball milled forms of chitin. On the other hand, drying and humidification of raw and processed materials presented no added value to the compressibility and compactibility of the directly compressed excipient. Finally, compacted chitin showed direct compression similarity with microcrystalline cellulose when formulated with metronidazole (200 mg) without affecting the immediate drug release action of the drug.


Sign in / Sign up

Export Citation Format

Share Document