scholarly journals Butterfly Shaped Patch Antenna for 5G Application

2020 ◽  
Vol 8 (3) ◽  
pp. 32-35
Author(s):  
Ribhu Abhusan Panda ◽  
Mihir Panda ◽  
Pawan Kumar Nayak ◽  
Debasish Mishra

Widely used patch in circular shape has been cut in two semicircular shapes and joined together, arc to arc to same feed in dipolar form, produces a butterfly shape. In this paper each semicircular shapes are remodeled as bi-circular shapes for enhancement of gain so that it can be operated at a frequency of 15GHz which is applicable for 5G communication. This antenna is placed on a substrate of FR4-epoxy material. The design of the shape is based on the minimum distance of the two extreme arcs of the two parts which becomes the wavelength of the required resonant frequency. This design is compatible with all antenna requirements including S11 plot from which the resonant frequency and return loss have been determined. The software used in HFSS, by which antenna parameters like antenna gain, directivity etc. have been checked. The patch and the ground plane is of same material, copper.

2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
V. Srinivasa Rao ◽  
K.V.V.S. Reddy ◽  
A.M. Prasad

<p class="Abstract">Communication has become a key aspect of our daily life, becoming increasingly portable and mobile. This would need the use of micro strip antennas. The rapid growth has led to the need of antennas with smaller size, increased bandwidth and high gain. In this paper, a new version of micro strip patch antenna is designed by adopting double layered substrate concept and adding a layer of metamaterial structure to a square micro strip antenna. The antenna properties gain, return loss and bandwidth are studied to achieve better performance. The designed patch antenna has an improved bandwidth of 60% at a resonant frequency of 2.47 GHz. This antenna is designed and simulated by using HFSS software.</p>


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Muhammad Aamir Afridi ◽  
Sadiq Ullah

In this paper, a 2.42 GHz micro-strip patch antenna is designed and analyzed using a conventional and a metamaterial (artificial) based Electromagnetic Bandgap (EBG) ground planes. The directivity, return loss and VSWR of the conventional 2.42 GHz patch antenna were found to be 5.23dB, -13.2dB, and 1.5 respectively. The proposed antenna then being mounted on a Mushroom-type EBG structures (artificial ground plane) produced better far-field performance as compared to conventional counterpart i.e. the return loss, directivity and VSWR were improved by 80.3%, 58.5% and 24.6%. The WLAN antenna was designed and tested on a miniaturized slotted EBG structure. The slotted EBG was 11.4 % compact as compared to the mushroom structure. The directivity, return loss and VSWR of the antenna using the slotted EBG are improved by be 51%, 31.8%, 15.4% respectively as compared to the patch conventional WLAN patch antenna. The antenna can be used for WLAN applications.


2018 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
Suroj Burlakoti ◽  
Prakash Rai

In this paper, Microstrip patch antennas with rectangular and swastika shape of patch are designed and its performance parameters are compared with each other. Rectangular and Swastika shaped patch are considered in this paper with common rectangular ground plane. The antenna is simulated at 2.4 GHz using HFSS simulation software. This work mainly includes modification of antenna patch to improve the antenna parameters. The parameters of antenna such as Return loss, VSWR Bandwidth and radiation pattern are compared using simulation. The performance of Swastika shaped antenna was found to be better than rectangular shaped microstrip patch antenna with improved Return Loss, VSWR, Bandwidth and Radiation Pattern.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 151
Author(s):  
Kavitha Thandapani ◽  
Shiyamala Subramani

Dual U Slot Loaded Truncated Microstrip Patch Antenna is designed for wireless applications. The proposed geometry comprised of two inverted U slots in truncated circular patch antenna operation covering 2.24 to 2.72 GHZ frequency bands are obtained. It is found that the slot and truncated is used to improve the bandwidth and return loss respectively. The resonant frequency is found to be 2.5GHZ. The bandwidth of the proposed antenna for lower and upper resonant frequency is found to be 19.2%. The proposed antenna is fed by 50Ω co-axial probe feed and simulated on Rogers RT/duroid5880 substrate.  Rogers RT/duroid 5880 substrate has dielectric constant and loss tangent of 2.2 and 0.0009 respectively. An air gap is used in this proposed design for tuning the desired frequencies and increasing the bandwidth. The antenna shows an acceptable gain of 2.1dB to 5.7dB with unidirectional pattern over the obtained frequency band. 


In this paper, a metamaterial based compact multiband rectangular microstrip patch antenna is proposed. The return loss of metamaterial loaded microstrip patch antenna obtained at the resonant frequency 2.4GHz. The metamaterial structure printed on FR4 substrate at hight of 1.6mm from the ground plane. The FR4 substrate has 4.4 dielectric constant.These metamterial structures are periodic in nature and possesses negative permittivity and negative permeability. The greatest advantage of metamaterial loading will be miniaturization. This metamterial loaded rectangular patch antenna is simulated and tested using HFSS Simulator, where an electromagnetic analysis tool is used. The fabricated antennas results are measured using Vector Network Analyzer (VNA).


2018 ◽  
Vol 7 (4) ◽  
pp. 587-592
Author(s):  
K. Thana Pakkiam ◽  
K. Baskaran ◽  
J. S. Mandeep

In this paper, a simple mail box design of a dual band microstrip patch antenna, is proposed, designed, fabricated and measured for wireless LAN communications. The proposed antenna is designed using the TLC 30 (TACONIC) substrate, with a relative permittivity of 4.3 and substrate height of 1.6mm. It is designed to operate at 2.44 GHz and 5. 30 GHz respectively. The proposed antenna is the size of 31mm x 34mm x1.6mm and is incited by a 50 Ω micro strip feed line. The characteristics of the antenna are designed and the performance of the modelled antenna is evaluated using CST Microwave Studio. The return loss, radiation patterns and peak antenna gain of 6.5 dBi for frequency 2.44 GHz and 6.2 dBi for 5.30 GHz is separately and successfully plotted. The fabricated prototype exhibits an agreement between the measured and simulated return loss.


Sign in / Sign up

Export Citation Format

Share Document