scholarly journals Analysis of the Efficiency of Elementary Grids of Axial Compressors Based on the Data of Flat Grid Purges

Published data on flat grid purges allow to evaluate the efficiency of blade devices with different kinematic scheme of stages and design parameters. The authors present the main provisions of the calculation program algorithm and some results of numerical analysis of the efficiency of flat grids of axial stages with different combinations of design parameters. The content of the article and the computer program are addressed to people who are improving their knowledge of gas dynamics of axial compressors. Some of the results may be of interest to specialists working professionally in this field.

Published data on flat grid purges allow to evaluate the efficiency of blade devices with different kinematic scheme of stages and design parameters. The corresponding computer program ODOS-GP04 and examples of numerical analysis of the efficiency of flat grids and spatial blade devices of axial stages with different combinations of design parameters was provided. Further development of the ODOS-GP04 program is described below, which makes it possible to perform an estimated calculation of the gas-dynamic characteristics of the stages designed using this program. Analysis of the calculated characteristics of a number of typical stages allows to draw a conclusion about the influence of the main design parameters. This article is primarily addressed to people who are developing their knowledge of the gas dynamics of axial compressors. Some results of calculations do not correspond to the published experimental data. The authors expect that this may attract the attention of specialists working in the field of gas dynamics of axial compressors.


1988 ◽  
Author(s):  
Ian N. Moyle

The effects of tip clearance changes on efficiency in axial compressors are typically established experimentally. The ratio of change of efficiency with change of clearance gap varies significantly for different compressors in the published data. An analysis of this sensitivity range in terms of the blade and stage design parameters was initiated. The analysis revealed that the sensitivity range largely resulted from a derivation at constant flow of the efficiency decrement. It was also found that a generalized loss method of generating the sensitivities produced a much improved correlation of the change in efficiency with change in clearance over a variety of machines, configurations and speeds.


Author(s):  
N. Premkumar ◽  
K. Subhashini ◽  
G. Valarmathi ◽  
Jagadeesh Kumar ◽  
S Meganathan

1999 ◽  
Vol 121 (3) ◽  
pp. 499-509 ◽  
Author(s):  
S. A. Khalid ◽  
A. S. Khalsa ◽  
I. A. Waitz ◽  
C. S. Tan ◽  
E. M. Greitzer ◽  
...  

This paper presents a new methodology for quantifying compressor endwall blockage and an approach, using this quantification, for defining the links between design parameters, flow conditions, and the growth of blockage due to tip clearance flow. Numerical simulations, measurements in a low-speed compressor, and measurements in a wind tunnel designed to simulate a compressor clearance flow are used to assess the approach. The analysis thus developed allows predictions of endwall blockage associated with variations in tip clearance, blade stagger angle, inlet boundary layer thickness, loading level, loading profile, solidity, and clearance jet total pressure. The estimates provided by this simplified method capture the trends in blockage with changes in design parameters to within 10 percent. More importantly, however, the method provides physical insight into, and thus guidance for control of, the flow features and phenomena responsible for compressor endwall blockage generation.


2007 ◽  
Vol 4 (1) ◽  
pp. 119-124
Author(s):  
Baghdad Science Journal

A simplified theoretical comparison of the hydrogen chloride (HCl) and hydrogen fluoride (HF) chemical lasers is presented by using computer program. The program is able to predict quantitative variations of the laser characteristics as a function of rotational and vibrational quantum number. Lasing is assumed to occur in a Fabry-Perot cavity on vibration-rotation transitions between two vibrational levels of hypothetical diatomic molecule. This study include a comprehensive parametric analysis that indicates that the large rotational constant of HF laser in comparison with HCl laser makes it relatively easy to satisfy the partial inversion criterion. The results of this computer program proved their credibility when compared with the little published data.


Akustika ◽  
2021 ◽  
pp. 80
Author(s):  
Vadim Palchikovskiy ◽  
Igor Khramtsov ◽  
Aleksander Kuznetsov ◽  
Victor Pavlogradskiy

The article considers the general issues arising in designing the experimental setup “Impedance tube with grazing flow”, the main structural units of the setup, and their purpose. It is given the basic requirements to be provided by the setup when testing samples of acoustic liners used in an aircraft engine. The choosing of the design parameters of the setup is based on the analysis of the known analytical solutions of the acoustics and gas dynamics, and on the numerical simulation of the grazing flow in the impedance tube.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 147 ◽  
Author(s):  
Isad Šarić ◽  
Adis Muminović

This paper presents the process of developing an integrated intelligent CAD system (IICAD) for synthesis and stress-deformation analysis of pressure vessels. The name of the system is IICAD PP system. The goal of the paper is to present procedures and steps to develop IICAD system for specific type of products. These procedures and steps can be used to develop IICAD system for any type of specific products or family of products. IICAD PP system can help engineers during calculation and design of pressure vessels. The paper shows that IICAD PP system enables quick calculations of design parameters, automatic generations of 3D geometrical model and automatic conduction of numerical analysis for stress and deformation. All these design activities take a lot of time from engineers if they are done using conventional methods.


Author(s):  
Gizem Gulben ◽  
Selin Aradag ◽  
Nilay Sezer-Uzol ◽  
Ufuk Atamturk

In this study, a computer program is developed to calculate characteristics of a Chevron type gasketed plate heat exchanger (CTGPHEX) such as: the number of plates, the effective surface area and total pressure drops. The main reason to prefer the use of CTGPHEXs to other various types of heat exchangers is that the heat transfer efficiency is much higher in comparison. Working conditions such as the flow rates and inlet and outlet temperature of both flow sides and plate design parameters are used as an input in the program. The Logarithmic Mean Temperature Method and the different correlations for convective heat transfer coefficient and Fanning factor that are found in the literature are applied to calculate the minimum necessary effective heat transfer area, the number of plate and pressure drops due to friction for both fluid sides of fulfill the desired heat transfer rate. This Turkish / English language optioned user friendly computer program is targeted to be used in domestic companies to design and select CTGPHEXs for any desired working conditions.


Sign in / Sign up

Export Citation Format

Share Document