Lymph diseases diagnosis approach based on support vector machines with different kernel functions

Author(s):  
Hanaa Ismail Elshazly ◽  
Abeer Mohamed Elkorany ◽  
Aboul Ella Hassanien

This article presented in the context of 2D global facial recognition, using Gabor Wavelet's feature extraction algorithms, and facial recognition Support Vector Machines (SVM), the latter incorporating the kernel functions: linear, cubic and Gaussian. The models generated by these kernels were validated by the cross validation technique through the Matlab application. The objective is to observe the results of facial recognition in each case. An efficient technique is proposed that includes the mentioned algorithms for a database of 2D images. The technique has been processed in its training and testing phases, for the facial image databases FERET [1] and MUCT [2], and the models generated by the technique allowed to perform the tests, whose results achieved a facial recognition of individuals over 96%.


Author(s):  
Alina Lazar ◽  
Bradley A. Shellito

Support Vector Machines (SVM) are powerful tools for classification of data. This article describes the functionality of SVM including their design and operation. SVM have been shown to provide high classification accuracies and have good generalization capabilities. SVM can classify linearly separable data as well as nonlinearly separable data through the use of the kernel function. The advantages of using SVM are discussed along with the standard types of kernel functions. Furthermore, the effectiveness of applying SVM to large, spatial datasets derived from Geographic Information Systems (GIS) is also described. Future trends and applications are also discussed – the described extracted dataset contains seven independent variables related to urban development plus a class label which denotes the urban areas versus the rural areas. This large dataset, with over a million instances really proves the generalization capabilities of the SVM methods. Also, the spatial property allows experts to analyze the error signal.


2014 ◽  
Vol 511-512 ◽  
pp. 467-474
Author(s):  
Jun Tu ◽  
Cheng Liang Liu ◽  
Zhong Hua Miao

Feature selection plays an important role in terrain classification for outdoor robot navigation. For terrain classification, the image data usually have a large number of feature dimensions. The better selection of features usually results in higher labeling accuracy. In this work, a novel approach for terrain perception using Importance Factor based I-Relief algorithm and Feature Weighted Support Vector Machines (IFIR-FWSVM) is put forward. Firstly, the weight of each feature for classification is computed by using Importance Factor based I-Relief algorithm (IFIR) and the irrelevant features are eliminated. Then the weighted features are used to compute the kernel functions of SVM and trained the classifier. Finally, the trained SVM is employed to predict the terrain label in the far-field regions. Experimental results based on DARPA datasets show that the proposed method IFIR-FWSVM is superior over traditional SVM.


2014 ◽  
Vol 644-650 ◽  
pp. 4314-4318
Author(s):  
Xin You Wang ◽  
Ya Li Ning ◽  
Xi Ping He

In order to solve the problem of the conventional methods operated directly in the image, difficult to obtain good results because they are poor in high dimension performance. In this paper, a new method was proposed, which use the Least Squares Support Vector Machines in image segmentation. Furthermore, the parameters of kernel functions are also be optimized by Particle Swarm Optimization (PSO) algorithm. The practical application in various of standard data sets and color image segmentation experiment. The results show that, LS-SVM can use a variety of features in image, the experiments have achieved good results of image segmentation, and the time needed for segmentation is greatly reduced than standard SVM.


Author(s):  
Sadaaki Miyamoto ◽  
◽  
Youichi Nakayama ◽  

We discuss hard c-means clustering using a mapping into a high-dimensional space considered within the theory of support vector machines. Two types of iterative algorithms are developed. Effectiveness of the proposed method is shown by numerical examples.


2014 ◽  
Vol 281 ◽  
pp. 478-495 ◽  
Author(s):  
Helmuth Pree ◽  
Benjamin Herwig ◽  
Thiemo Gruber ◽  
Bernhard Sick ◽  
Klaus David ◽  
...  

2018 ◽  
Vol 200 ◽  
pp. 00004
Author(s):  
Guermah Bassma ◽  
El Ghazi Hassan ◽  
Sadiki Tayeb

Since the middle ages, the need to identify the vehicles position in their local environment has always been a necessity and a challenge. Today, GNSS-based positioning systems have penetrated several field, such as land transport, emergency systems and civil aviation requiring high positioning accuracy. However, the performances of GNSS-based systems can be degraded in harsh environment due to non-line-of-sight (NLOS), Multipath and masking effects. In this paper, for improving vehicle localization in urban canyons, we address a very challenging problem related to GNSS signal reception state detection (LOS, NLOS or Multipath). A SVMbased system for GNSS Multipath detection using the fusion of information provided by two GNSS antennas is proposed. In this work, we aim to explore the potential of machine learning, and more precisely, Support Vector Machines (SVM) to identify GNSS signals reception state. The SVM-based system developed in this work has used the C/N0 of signals provided by RHCP and LHCP antennas, and satellite elevation as classification criteria. The training data set is constructed by several experimental studies done in real environments, Calais, France . Furthermore, four SVM kernel functions are tested, namely, Linear, Gaussian, Cubic and Quadratic. A GNSS signal reception state detection by applying the proposed SVM-based classifier is demonstrated on real GPS signals, and the efficiency of the system is shown. We obtain empirically an accuracy of signal detection about 93%.


Sign in / Sign up

Export Citation Format

Share Document