scholarly journals Circuit Optimization Study According to the Maximum Principle

2021 ◽  
Vol 20 ◽  
pp. 362-371
Author(s):  
Alexander Zemliak

The minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic system. A special control vector that changes the internal structure of the equations of optimization procedure serves as a principal tool for searching the best strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical approach for finding of the optimum structure of control vector. Practical approach for realization of the maximum principle is based on the analysis of behavior of a Hamiltonian for various strategies of optimization. The possibility of applying the maximum principle to the problem of optimization of electronic circuits is analyzed. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of maximum principle compared with the traditional approach is equal two to three orders of magnitude.

2020 ◽  
Vol 19 ◽  

The solution of a problem of analogue circuit optimization is mathematically defined as a controllable dynamic system. In this context the minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic system. A special control vector that changes the internal structure of the equations of optimization procedure serves as a principal tool for searching the best strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical approach for finding of the optimum structure of control vector. Practical approach for realization of the maximum principle is based on the analysis of behaviour of a Hamiltonian for various strategies of optimization. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of maximum principle compared with the traditional approach is equal two to three orders of magnitude.


Author(s):  
Alexander Zemliak ◽  
Jorge Espinosa-Garcia

Purpose In this paper, on the basis of a previously developed approach to circuit optimization, the main element of which is the control vector that changes the form of the basic equations, the structure of the control vector is determined, which minimizes CPU time. Design/methodology/approach The circuit optimization process is defined as a controlled dynamic system with a special control vector. This vector serves as the main tool for generalizing the problem of circuit optimization and produces a huge number of different optimization strategies. The task of finding the best optimization strategy that minimizes processor time can be formulated. There is a need to find the optimal structure of the control vector that minimizes processor time. A special function, which is a combination of the Lyapunov function of the optimization process and its time derivative, was proposed to predict the optimal structure of the control vector. The found optimal positions of the switching points of the control vector give a large gain in CPU time in comparison with the traditional approach. Findings The optimal positions of the switching points of the components of the control vector were calculated. They minimize processor time. Numerical results are obtained for various circuits. Originality/value The Lyapunov function, which is one of the main characteristics of any dynamic system, is used to determine the optimal structure of the control vector, which minimizes the time of the circuit optimization process.


Author(s):  
Alexander Zemliak

Purpose This paper aims to propose a new approach on the problem of circuit optimisation by using the generalised optimisation methodology presented earlier. This approach is focused on the application of the maximum principle of Pontryagin for searching the best structure of a control vector providing the minimum central processing unit (CPU) time. Design/methodology/approach The process of circuit optimisation is defined mathematically as a controllable dynamical system with a control vector that changes the internal structure of the equations of the optimisation procedure. In this case, a well-known maximum principle of Pontryagin is the best theoretical approach for finding of the optimum structure of control vector. A practical approach for the realisation of the maximum principle is based on the analysis of the behaviour of a Hamiltonian for various strategies of optimisation and provides the possibility to find the optimum points of switching for the control vector. Findings It is shown that in spite of the fact that the maximum principle is not a sufficient condition for obtaining the global minimum for the non-linear problem, the decision can be obtained in the form of local minima. These local minima provide rather a low value of the CPU time. Numerical results were obtained for both a two-dimensional case and an N-dimensional case. Originality/value The possibility of the use of the maximum principle of Pontryagin to a problem of circuit optimisation is analysed systematically for the first time. The important result is the theoretical justification of formerly discovered effect of acceleration of the process of circuit optimisation.


2020 ◽  
Vol 19 ◽  

The process of optimizing the circuit is formulated as a controlled dynamic system. A special control vector has been defined to redistribute the computational cost between circuit analysis and parametric optimization. This redistribution will help solve the task of optimizing the circuit for minimum CPU time. In this case, the task of optimizing the circuit with minimal CPU time can be formulated as the classical optimal control problem for minimizing some functional. The concept of the Lyapunov function of a controlled dynamic system is used to analyze the main characteristics of the design process. An analysis of the Lyapunov function and its time derivative makes it possible to predict the optimal structure of the control vector for constructing an optimal or quasi-optimal circuit design algorithm. The results are based on the previously discovered effect of accelerating the design process. In this case, the optimal structure of the control vector is determined, which minimizes processor time.


1967 ◽  
Vol 71 (679) ◽  
pp. 513-515 ◽  
Author(s):  
L. C. W. Dixon

Every structural member deforms under the forces acting upon it. In this paper the Maximum Principle, recently developed by Pontryagin is applied to the problem of determining that profile of a beam that deforms least under its own weight. The beam considered is a solid horizontal cantilever having constant density, modulus of elasticity and width. The height is taken as an independent variable subject to the restrictions that it lies between an upper and lower bound and is symmetrically distributed about the centre-line. The method is attractive in that it can readily be extended to take account of variable density, width and/or hollow members by extending the control vector u defined in the analysis.


2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Alexander Yeliseev ◽  
Tatiana Ratnikova ◽  
Daria Shaposhnikova

The aim of this study is to develop a regularization method for boundary value problems for a parabolic equation. A singularly perturbed boundary value problem on the semiaxis is considered in the case of a “simple” rational turning point. To prove the asymptotic convergence of the series, the maximum principle is used.


1986 ◽  
Vol 108 (4) ◽  
pp. 330-339 ◽  
Author(s):  
M. A. Townsend ◽  
D. B. Cherchas ◽  
A. Abdelmessih

This study considers the optimal control of dry bulb temperature and moisture content in a single zone, to be accomplished in such a way as to be implementable in any zone of a multi-zone system. Optimality is determined in terms of appropriate cost and performance functions and subject to practical limits using the maximum principle. Several candidate optimal control strategies are investigated. It is shown that a bang-bang switching control which is theoretically periodic is a least cost practical control. In addition, specific attributes of this class of problem are explored.


Sign in / Sign up

Export Citation Format

Share Document