scholarly journals Mixture of Lindley and Inverse Weibull Distributions: Properties and Estimation

2021 ◽  
Vol 20 ◽  
pp. 134-143
Author(s):  
A. S. Al-Moisheer ◽  
A. F. Daghestani ◽  
K. S. Sultan

In this paper, we talk about a mixture of one-parameter Lindley and inverse Weibull distributions (MLIWD). First, We introduce and discuss the MLIWD. Then, we study the main statistical properties of the proposed mixture and provide some graphs of both the density and the associated hazard rate functions. After that, we estimate the unknown parameters of the proposed mixture via two estimation methods, namely, the generalized method of moments and maximum likelihood. In addition, we compare the estimation methods via some simulation studies to determine the efficacy of the two estimation methods. Finally, we evaluate the performance and behavior of the proposed mixture with different numerical examples and real data application in survival analysis.

2017 ◽  
Vol 18 (2) ◽  
pp. 0233 ◽  
Author(s):  
Hassan S Bakouch ◽  
Sanku Dey ◽  
Pedro Luiz Ramos ◽  
Francisco Louzada

In this paper, we have considered different estimation methods of the unknown parameters of a binomial-exponential 2 distribution. First, we briefly describe different frequentist approaches such as the method of moments, modified moments, ordinary least-squares estimation, weightedleast-squares estimation, percentile, maximum product of spacings, Cramer-von Mises type minimum distance, Anderson-Darling and Right-tail Anderson-Darling, and compare them using extensive numerical simulations. We apply our proposed methodology to three real data sets related to the total monthly rainfall during April, May and September at Sao Carlos, Brazil.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


2015 ◽  
Vol 16 (4) ◽  
pp. 464-489 ◽  
Author(s):  
Eugen Dimant ◽  
Margarete Redlin ◽  
Tim Krieger

AbstractThis paper analyzes the impact of migration on destination-country corruption levels. Capitalizing on a comprehensive dataset consisting of annual immigration stocks of OECD countries from 207 countries of origin for the period 1984-2008, we explore different channels through which corruption might migrate. We employ different estimation methods using fixed effects and Tobit regressions in order to validate our findings. Moreover, we also address the issue of endogeneity by using the Difference- Generalized Method of Moments estimator. Independent of the econometric methodology, we consistently find that while general migration has an insignificant effect on the destination country’s corruption level, immigration from corruption-ridden origin countries boosts corruption in the destination country. Our findings provide a more profound understanding of the socioeconomic implications associated with migration flows.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2164
Author(s):  
Héctor J. Gómez ◽  
Diego I. Gallardo ◽  
Karol I. Santoro

In this paper, we present an extension of the truncated positive normal (TPN) distribution to model positive data with a high kurtosis. The new model is defined as the quotient between two random variables: the TPN distribution (numerator) and the power of a standard uniform distribution (denominator). The resulting model has greater kurtosis than the TPN distribution. We studied some properties of the distribution, such as moments, asymmetry, and kurtosis. Parameter estimation is based on the moments method, and maximum likelihood estimation uses the expectation-maximization algorithm. We performed some simulation studies to assess the recovery parameters and illustrate the model with a real data application related to body weight. The computational implementation of this work was included in the tpn package of the R software.


Author(s):  
Mohamed E. Mead ◽  
Gauss M. Cordeiro ◽  
Ahmed Z. Afify ◽  
Hazem Al Mofleh

Mahdavi A. and Kundu D. (2017) introduced a family for generating univariate distributions called the alpha power transformation. They studied as a special case the properties of the alpha power transformed exponential distribution. We provide some mathematical properties of this distribution and define a four-parameter lifetime model called the alpha power exponentiated Weibull distribution. It generalizes some well-known lifetime models such as the exponentiated exponential, exponentiated Rayleigh, exponentiated Weibull and Weibull distributions. The importance of the new distribution comes from its ability to model monotone and non-monotone failure rate functions, which are quite common in reliability studies. We derive some basic properties of the proposed distribution including quantile and generating functions, moments and order statistics. The maximum likelihood method is used to estimate the model parameters. Simulation results investigate the performance of the estimates. We illustrate the importance of the proposed distribution over the McDonald Weibull, beta Weibull, modified Weibull, transmuted Weibull and exponentiated Weibull distributions by means of two real data sets.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1578 ◽  
Author(s):  
Hazem Al-Mofleh ◽  
Ahmed Z. Afify ◽  
Noor Akma Ibrahim

In this paper, a new two-parameter generalized Ramos–Louzada distribution is proposed. The proposed model provides more flexibility in modeling data with increasing, decreasing, J-shaped, and reversed-J shaped hazard rate functions. Several statistical properties of the model were derived. The unknown parameters of the new distribution were explored using eight frequentist estimation approaches. These approaches are important for developing guidelines to choose the best method of estimation for the model parameters, which would be of great interest to practitioners and applied statisticians. Detailed numerical simulations are presented to examine the bias and the mean square error of the proposed estimators. The best estimation method and ordering performance of the estimators were determined using the partial and overall ranks of all estimation methods for various parameter combinations. The performance of the proposed distribution is illustrated using two real datasets from the fields of medicine and geology, and both datasets show that the new model is more appropriate as compared to the Marshall–Olkin exponential, exponentiated exponential, beta exponential, gamma, Poisson–Lomax, Lindley geometric, generalized Lindley, and Lindley distributions, among others.


2013 ◽  
Vol 48 (1) ◽  
pp. 277-307 ◽  
Author(s):  
Anthony W. Lynch ◽  
Jessica A. Wachter

AbstractThis paper describes estimation methods, based on the generalized method of moments (GMM), applicable in settings where time series have different starting or ending dates. We introduce two estimators that are more efficient asymptotically than standard GMM. We apply these to estimating predictive regressions in international data and show that the use of the full sample affects inference for assets with data available over the full period as well as for assets with data available for a subset of the period. Monte Carlo experiments demonstrate that reductions hold for small-sample standard errors as well as asymptotic ones.


Author(s):  
Amal Hassan ◽  
Salwa Assar ◽  
Kareem Ali

<p>This paper proposed a new general class of continuous lifetime distributions, which is a complementary to the Poisson-Lindley family proposed by Asgharzadeh et al. [3]. The new class is derived by compounding the maximum of a random number of independent and identically continuous distributed random variables, and Poisson-Lindley distribution. Several properties of the proposed class are discussed, including a formal proof of probability density, cumulative distribution, and reliability and hazard rate functions. The unknown parameters are estimated by the maximum likelihood method and the Fisher’s information matrix elements are determined. Some sub-models of this class are investigated and studied in some details. Finally, a real data set is analyzed to illustrate the performance of new distributions.</p>


2020 ◽  
Vol 70 (4) ◽  
pp. 917-934
Author(s):  
Muhammad Mansoor ◽  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro ◽  
Sajid Ali ◽  
Ayman Alzaatreh

AbstractA generalization of the Lindley distribution namely, Lindley negative-binomial distribution, is introduced. The Lindley and the exponentiated Lindley distributions are considered as sub-models of the proposed distribution. The proposed model has flexible density and hazard rate functions. The density function can be decreasing, right-skewed, left-skewed and approximately symmetric. The hazard rate function possesses various shapes including increasing, decreasing and bathtub. Furthermore, the survival and hazard rate functions have closed form representations which make this model tractable for censored data analysis. Some general properties of the proposed model are studied such as ordinary and incomplete moments, moment generating function, mean deviations, Lorenz and Bonferroni curve. The maximum likelihood and the Bayesian estimation methods are utilized to estimate the model parameters. In addition, a small simulation study is conducted in order to evaluate the performance of the estimation methods. Two real data sets are used to illustrate the applicability of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document