scholarly journals Prediction of Material Behavior and Failure of Fresh Water Ice Based on Viscoplastic-Damage Model

2011 ◽  
Vol 48 (3) ◽  
pp. 275-280
Author(s):  
Hye-Yeon Choi ◽  
Chi-Seung Lee ◽  
Jong-Won Lee ◽  
Jae-Woo Ahn ◽  
Jae-Myung Lee
2020 ◽  
pp. 1-4
Author(s):  
Andrii Murdza ◽  
Aleksey Marchenko ◽  
Erland M. Schulson ◽  
Carl E. Renshaw

Abstract Further to systematic experiments on the flexural strength of laboratory-grown, fresh water ice loaded cyclically, this paper describes results from new experiments of the same kind on lake ice harvested in Svalbard. The experiments were conducted at −12 °C, 0.1 Hz frequency and outer-fiber stress in the range from ~ 0.1 to ~ 0.7 MPa. The results suggest that the flexural strength increases linearly with stress amplitude, similar to the behavior of laboratory-grown ice.


1962 ◽  
Vol 4 (31) ◽  
pp. 25-52 ◽  
Author(s):  
W. F. Weeks

AbstractTo resolve some of the factors causing strength variation in natural sea ice, fresh water and five different NaCl–H2O solutions were frozen in a tank designed to simulate the one-dimensional cooling of natural bodies of water. The resulting ice was structurally similar to lake and sea ice. The salinity of the salt ice varied from 1‰ to 22‰. Tables of brine volumes and densities were computed for these salinities in the temperature range 0° to −35° C. The ring-tensile strength σ of fresh-water ice was found to be essentially temperature independent from −10° to −30°C., with an average value of 29.6±8.5 kg./cm.2at −10° C. The strength of salt ice at temperatures above the eutectic point (–21.2° C.) significantly decreases with brine volumev;. The σ–axis intercept of this line is comparable to the a values determined for fresh ice indicating that there is little, if any, difference in stress concentration between sea and lake ice as a result of the presence of brine pockets. The strength of ice containing NaCl.2H2O is slightly less than the strength of freshwater ice and is independent of the volume of solid salt and the ice temperature. No evidence was found for the existence of either phase or geometric hysteresis in NaCl ice. The strength of ice at sub-eutectic temperatures, however, is decreased appreciably if the ice has been subjected to temperatures above the eutectic point; this is the result of the redistribution of brine during the warm-temperature period. Short-term cooling produces an appreciable (20 per cent) decrease in strength, in fresh-water and NaCl.2H2O ice. The present results are compared with tests on natural sea ice and it is suggested that the strength of freshwater ice is a limit which is approached but not exceeded by cold sea ice and that the reinforcement of brine pockets by Na2SO4.10H2O is either lacking or much less than previously assumed.


Author(s):  
Dawn Graninger ◽  
Megan Bruck Syal ◽  
J. Michael Owen ◽  
Paul Miller

Abstract Understanding how a potentially hazardous object (PHO) responds to a kinetic impactor is of great interest to the planetary defense community. Target response depends upon the detailed material properties of the PHO, which may not be well constrained ahead of time. Hence, it is useful to explore a variety of target compositions for kinetic impact deflection. Previous validation efforts have focused primarily on understanding the behavior of common rocky materials, though PHOs are not exclusively composed of such material. Water ice is one material for which there has been only limited code validation against cratering experiments. It is known that comets consist of primarily icy material and some asteroids likely contain some amount of ice. Therefore, it is useful to understand the model sensitivities for ice in deflection simulations. Here we present Adaptive Smoothed Particle Hydrodynamics simulations of impacts into water ice by an aluminum projectile. We explore the sensitivities to the damage model within our code and find that the best-fit simulations of ice occur with a Weibull modulus of 12, though results can be obtained with values of the Weibull modulus near the published value of 9.59. This work demonstrates the efficacy of using an adaptive smoothed particle hydrodynamics code to simulate impacts into ice.


1994 ◽  
Vol 40 (134) ◽  
pp. 119-124
Author(s):  
R.E. Gagnon

AbstractA stainless-steel platen, with a centrally located pressure sensor on the front face, has been used to crush mono-crystalline, bubble-free fresh-water ice samples. Two electrical conductors, located on the face of the pressure sensor, were connected to a bridge circuit so that the presence of liquid between the two conductors could be detected and its thickness measured. Video records of the ice/ steel contact zone during crushing were obtained by mounting samples on a thick Plexiglas plate which permitted viewing through the specimen to the ice/steel interface. Total load and pressure records exhibited a sawtooth pattern due to the compliance of the ice and the testing apparatus, and spalling of ice from the contact zone. When the region of contact was in the vicinity of the pressure transducer, liquid was detected and peaks occurred in the liquid sensor output when load drops occurred. Contact between the platen and the ice consisted of low pressure zones of highly damaged crushed and/or refrozen ice, opaque in appearance, and transparent, high-pressure regions of relatively undamaged ice. Upper limits for the liquid-layer thickness on the high-pressure undamaged ice were ~3 µm on the ascending sides of the sawteeth in the load records and ~ 21 µ on the sharp descending sides.


1962 ◽  
Vol 4 (31) ◽  
pp. 134 ◽  
Author(s):  
F. Loewe
Keyword(s):  

1994 ◽  
Vol 40 (136) ◽  
pp. 566-568
Author(s):  
G. A. Kuehn ◽  
E. M. Schulson

AbstractExperiments have shown that tensile ductility of about 5% or more can be imparted to columnar, saline ice by pre-compressing the material by about 3.5%. This effect is similar to that observed in granular, fresh-water ice and is attributed to the operation of both dislocation creep and diffusion creep within that part of the matrix which recrystallized during the pre-compressive deformation.


1961 ◽  
Vol 3 (30) ◽  
pp. 1051-1052
Author(s):  
F. Loewe

AbstractMelting at the bottom of floating ice shelves may represent an important item in the mass economy of ice sheets. Some earlier studies of the behaviour of fresh-water ice in sea-water at a temperature below 0° C. are quoted.


1859 ◽  
Vol 9 ◽  
pp. 609-611 ◽  

The contradictory statements of Dr. Sutherland and Dr. Kane, with regard to the saltness of the ice formed from sea-water,—the former maintaining that sea-water ice contains about one-fourth of the salt of the original water; the latter, that if the cold be sufficiently intense, there will be formed from sea-water a fresh and purer element fit for domestic use,—induced the author to take advantage of his position, as naturalist to the expedition now in the northern seas, to reinvestigate the subject. The changes which he has observed sea-water to undergo in freezing are the following. When the temperature falls below + 28°⋅5, it becomes covered with a thin pellicle of ice; after some time this pellicle becomes thicker and presents a vertically striated structure, similar to that of the ordinary cakes of sal-ammoniac. As the ice further increases in thickness, it becomes more compact, but the lowest portion still retains the striated structure. On the surface of the ice, saline crystals, designated by the author “efflorescence,” soon begin to form, at first few in number and widely separated, but gradually forming into tufts and ultimately covering the whole surface. At first, the increase in thickness of the ice is rapid, but afterwards the rate of growth is much slower and more uniform. The ice formed yields, on being melted, a solution differing in specific gravity according to the temperature at the time of congelation, its density being less, the lower the temperature at which the process of congelation took place. Although the author’s observations extended from + 28°⋅5 to —42°, he was never able to obtain fresh-water from sea-ice, the purest specimen being of specific gravity 1⋅005, and affording abundant evidence of the presence of salts, especially of chloride of sodium, in such quantity as to render it unfit for domestic purposes.


1964 ◽  
Vol 5 (37) ◽  
pp. 17-38 ◽  
Author(s):  
David D. Smith

AbstractIce island ARLIS II, which is adrift in the Arctic Ocean, is a 1.3 km. wide and 3.8 km. long fragment of shelf ice 12–25 m. thick, which preserves several structural features heretofore undescribed in ice. The island is composed of an irregular central block of foliated, locally debris-rich, grey glacial ice bordered in part by extensive areas of stratified bluish sea ice. The central block contains a series of narrow, elongate, sub-parallel dike-like septa of massive fresh-water ice and a large tongue-like body of tightly folded, coarse banded ice. Both the septa and the tongue cut across the foliation and debris zones of the grey ice.The margins of the central block are penetrated by a series of elongate, crudely wedge-shaped re-entrants occupied by salients of bluish sea ice. Two broad, arch-like plunging anticlines deform the stratified sea ice along one margin of the block.The foliation and debris zones in the glacial ice are relict features inherited from the source glacier. The septa formed as crevasse and basal fracture fills. Salients represent fills formed in the irregular re-entrants along the margins of the glacial ice mass. The tongue of tightly folded, banded ice represents an earlier generation salient deformed by compressive forces as the fill built up. The broad anticlines are apparently the result of warping in response to differential ablation but the small, tight plunging folds on their noses and limbs are probably the result of compressive forces.


Sign in / Sign up

Export Citation Format

Share Document