scholarly journals Liquid biopsy in patients with pancreatic cancer: Circulating tumor cells and cell-free nucleic acids

2016 ◽  
Vol 22 (25) ◽  
pp. 5627 ◽  
Author(s):  
Taisuke Imamura ◽  
Shuhei Komatsu ◽  
Daisuke Ichikawa ◽  
Tsutomu Kawaguchi ◽  
Mahito Miyamae ◽  
...  
2017 ◽  
Vol 23 (31) ◽  
pp. 5650 ◽  
Author(s):  
Wataru Okajima ◽  
Shuhei Komatsu ◽  
Daisuke Ichikawa ◽  
Mahito Miyamae ◽  
Takuma Ohashi ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2221
Author(s):  
Luis Enrique Cortés-Hernández ◽  
Zahra Eslami-S ◽  
Bruno Costa-Silva ◽  
Catherine Alix-Panabières

In cancer, many analytes can be investigated through liquid biopsy. They play fundamental roles in the biological mechanisms underpinning the metastatic cascade and provide clinical information that can be monitored in real time during the natural course of cancer. Some of these analytes (circulating tumor cells and extracellular vesicles) share a key feature: the presence of a phospholipid membrane that includes proteins, lipids and possibly nucleic acids. Most cell-to-cell and cell-to-matrix interactions are modulated by the cell membrane composition. To understand cancer progression, it is essential to describe how proteins, lipids and nucleic acids in the membrane influence these interactions in cancer cells. Therefore, assessing such interactions and the phospholipid membrane composition in different liquid biopsy analytes might be important for future diagnostic and therapeutic strategies. In this review, we briefly describe some of the most important surface components of circulating tumor cells and extracellular vesicles as well as their interactions, putting an emphasis on how they are involved in the different steps of the metastatic cascade and how they can be exploited by the different liquid biopsy technologies.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1656 ◽  
Author(s):  
Etienne Buscail ◽  
Catherine Alix-Panabières ◽  
Pascaline Quincy ◽  
Thomas Cauvin ◽  
Alexandre Chauvet ◽  
...  

Purpose: Expediting the diagnosis of pancreatic ductal adenocarcinoma (PDAC) would benefit care management, especially for the start of treatments requiring histological evidence. This study evaluated the combined diagnostic performance of circulating biomarkers obtained by peripheral and portal blood liquid biopsy in patients with resectable PDAC. Experimental design: Liquid biopsies were performed in a prospective translational clinical trial (PANC-CTC #NCT03032913) including 22 patients with resectable PDAC and 28 noncancer controls from February to November 2017. Circulating tumor cells (CTCs) were detected using the CellSearch® method or after RosetteSep® enrichment combined with CRISPR/Cas9-improved KRAS mutant alleles quantification by droplet digital PCR. CD63 bead-coupled Glypican-1 (GPC1)-positive exosomes were quantified by flow cytometry. Results: Liquid biopsies were positive in 7/22 (32%), 13/22 (59%), and 14/22 (64%) patients with CellSearch® or RosetteSep®-based CTC detection or GPC1-positive exosomes, respectively, in peripheral and/or portal blood. Liquid biopsy performance was improved in portal blood only with CellSearch®, reaching 45% of PDAC identification (5/11) versus 10% (2/22) in peripheral blood. Importantly, combining CTC and GPC1-positive-exosome detection displayed 100% of sensitivity and 80% of specificity, with a negative predictive value of 100%. High levels of GPC1+-exosomes and/or CTC presence were significantly correlated with progression-free survival and with overall survival when CTC clusters were found. Conclusion: This study is the first to evaluate combined CTC and exosome detection to diagnose resectable pancreatic cancers. Liquid biopsy combining several biomarkers could provide a rapid, reliable, noninvasive decision-making tool in early, potentially curable pancreatic cancer. Moreover, the prognostic value could select patients eligible for neoadjuvant treatment before surgery. This exploratory study deserves further validation.


2019 ◽  
Vol Volume 11 ◽  
pp. 7405-7425 ◽  
Author(s):  
Lianyuan Tao ◽  
Li Su ◽  
Chunhui Yuan ◽  
Zhaolai Ma ◽  
Lingfu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document