Mineral chemistry and geochronology of the Rajasthan emerald deposits, NW India

2020 ◽  
Vol 58 (3) ◽  
pp. 335-346
Author(s):  
Paul Alexandre

ABSTRACT The emerald deposits in Rajasthan, northwest India, are situated in a narrow NE–SW belt in the Aravalli Mountains. The studied deposits were formed by the metasomatic reaction between muscovite (± garnet ± tourmaline) pegmatites and lenticular bodies of altered ultramafic rocks that are hosted by the Delhi Group gneisses. This reaction produced phlogopite schists containing the exometasomatic emeralds, as in all other granite-related emerald deposits. Endometasomatic changes of the mineralogy of the pegmatites is indicated by the geochemistry of the muscovite (phengitic substitution) and the feldspars (disappearance of the potassic feldspar and calcification of the plagioclase). The K-Ar analyses of syngenetic phlogopite (from the phlogopite schist) and muscovite (from the pegmatites) give an age of ca. 790 Ma, close to that of the last major orogeny affecting the region. This is in accordance with the ages of other granite-related deposits, which all formed in conditions of active orogeny. The ages of the biotite are lower than those of the muscovite, indicating limited radiogenic argon loss as a result of deformation.

2019 ◽  
Vol 56 (7) ◽  
pp. 715-737 ◽  
Author(s):  
Yong-hua Cao ◽  
David J. Good ◽  
Robert L. Linnen ◽  
Iain M. Samson

The Layered Series of the Midcontinent Rift related Coldwell Complex comprises thick sections of gabbro, without any known associated ultramafic rocks. It represents a major early intrusive unit of the Coldwell Complex and consists of thick accumulations of olivine gabbro and oxide augite melatroctolite. This study combines petrography, mineral chemistry, and lithogeochemistry to constrain the magma composition and petrogenesis of the Layered Series. The presence of cumulus orthoclase together with the observation that the Layered Series rocks plot in the alkaline field on a total alkali–silica diagram indicate that the Layered Series magma has an alkaline parentage. The stratigraphy of the Layered Series cannot be fully correlated between different areas using lithogeochemistry and mineral chemistry. This together with observed normal and reverse trends for mineral chemical compositions in different areas suggest that the processes related to magma emplacement and crystallization were different in different locations. The whole-rock concentrations of incompatible elements and the compositions of major minerals of the olivine gabbro and oxide augite melatroctolite units are chemically similar. However, major element lithogeochemistry is variable, dominantly due to differences in the abundances of olivine, clinopyroxene, plagioclase, and magnetite. An additional observation is that olivine and clinopyroxene are not in chemical equilibrium. Together, these observations are interpreted to reflect a combination of multiple injections of magma and crystal sorting in an open system.


1999 ◽  
Vol 18 (1) ◽  
pp. 30-38
Author(s):  
Ren Shengli ◽  
Zhou Xinghua ◽  
Li Jiliang ◽  
Sun Min

2021 ◽  
Author(s):  
◽  
Richard Irving Walcott

<p>The Red Hill Complex is an essentially concordant ultramafic body enclosed in Upper Paleozoic flysch facies sediments which include Pelorus Group (oldest), Lee River Group and Maitai Group. The Pelorus Group contains rare submarine lavas and is largely derived from spilitic volcanics. The Lee River Group consists of spilitic pillow lavas, volcanic breccias and spilitic basalts and dolerites. The Maitai Group consists of limestone, sandstone and argillite; an extensive conglomerate lens in the argillites is largely composed of andesitic pebbles. The Red Hill Complex is a 12,000 ft. thick lens and is part of a sheet of peridotites which may extend 40 miles northward to Dun Mountain. The Complex is divided into a 3000 ft thick Basal Zone of massive harzburgite and a 9000 ft thick Upper Zone of layered harzburgite and dunite with minor variants, feldspathic-peridotite, eucrite, lherzolite, wehrlite and pyroxenite. The bulk composition of both zones is approximately the same but the Upper Zone contains about 0.2 per cent feldspar not present in the Basal Zone. There is no significant regional change in mineral chemistry throughout the Complex and the average composition is about; olivine Fo91, 70 per cent; orthopyroxene, En88, 22 per cent; clinopyroxene, 5 per cent; feldspar An96, less than 0.2 per cent; spinel 2 per cent. Layering and foliation are common in the top of the Upper Zone. Layering is of at least two generations of which at least one is of metamorphic origin. Metamorphic layering was formed by metasomatic replacement probably along subhorizontal shear planes during intrusion of the ultramafic sheet. Pyroxene pegmatites formed after flow ceased. The diversity of rock types in the top of the Upper Zone is considered by the writer to have been caused by metamorphic differentiation of parent material the same composition as the Basal Zone. The preferred orientation of olivine in lineated, foliated, laminated and layered rocks has the same pattern suggesting a close genetic relationship between those structures. Evidence strongly supports a tectonic origin for the preferred orientation. Rocks in the Upper Zone are xenomorphic-granular in texture and those in the Basal Zone are typically protoclastic. Xenomorphic-granular textures are derived in part from protoclastic by post-deformational recrystallization. The ultramafic rocks are cut by a number of dykes composed of hornblende-labradorite, hypersthene-augite-bytownite assemblages or minor variants of these. The dykes were intruded shortly after emplacement of the ultramafic rocks. The Red Hill Complex is considered to have been emplaced as a sheet at shallow depths which intruded superficial deposits on the ocean floor and was later overlain by volcanics</p>


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 328 ◽  
Author(s):  
Juan Guotana ◽  
Tomoaki Morishita ◽  
Ryoko Yamaguchi ◽  
Ikuya Nishio ◽  
Akihiro Tamura ◽  
...  

Peridotites occur as lensoid bodies within the Mesoarchaean orthogneiss in the Akia terrane of Southern West Greenland. The Ulamertoq peridotite body is the largest of these peridotites hosted within the regional orthogneiss. It consists mainly of olivine, orthopyroxene, and amphibole-rich ultramafic rocks exhibiting metamorphic textural and chemical features. Chromitite layers from different localities in Ulamertoq show contrasting characteristics. In one locality, zoned chromites are hosted in orthopyroxene-amphibole peridotites. Compositional zonation in chromites is evident with decreasing Cr and Fe content from core to rim, while Al and Mg increase. Homogeneous chromites from another locality are fairly uniform and Fe-rich. The mineral chemistry of the major and accessory phases shows metamorphic signatures. Inferred temperature conditions suggest that the zoned chromites, homogeneous chromites, and their hosts are equilibrated at different metamorphic conditions. In this paper, various mechanisms during the cumulus to subsolidus stages are explored in order to understand the origin of the two contrasting types of chromites.


2020 ◽  
Author(s):  
Mahleqa Rezaei ◽  
Mohssen Moazzen ◽  
Tian-Nan Yang

&lt;p&gt;The Neo-Tethys-related Chaldoran ophiolite in NW Iran and at the Turkish border is a part of the larger Khoy ophiolite. Cumulate and isotropic gabbro along with serpentinized peridotite, pillow basalt, pelagic limestone, rare radiolarites, and volcano-sedimentary units are the main rock types in the area. The gabbros occur as lenses with ultramafic rocks, or as relatively large exposures with fault contact with ultramafic rocks. In this study, we provide new whole-rock geochemistry, mineral chemistry and zircon U/Pb age for the cumulate gabbros from the Chaldoran area. Gabbros have tholeiitic composition and are highly depleted. Chondrite normalized rare earth elements (REE) pattern for gabbros are comparative with REE patterns for N-MORB, but overall with more depleted features. The N-MORB normalized multi-elements pattern shows high depletion in HREE and HFSE and enrichment in some LREE and LILEs. Negative anomaly for some HFSE relative to N-MORB, along with enrichment in LILE for the samples indicates the source region as subduction influenced mantle. The cumulated gabbro whole rock and Clinopyroxenes geochemistry indicate an intra-oceanic forearc setting for the studied samples. They also have many similarities to boninite in mineral and whole rock geochemistry. U-Pb zircon dating of the gabbro samples indicates 95.3-114.1 Ma ages for the generation of the gabbros parent magma. The original magma was related to the later stages of the forearc setting in the subduction initiation (SI) stage. This &amp;#8216;SI&amp;#8217; related Albian-Cenomanian the Chaldoran depleted gabbro likely are the continuation of Taurus SI related late Cretaceous ophiolite complexes in Turkey.&lt;/p&gt;


2021 ◽  
Vol 11 (22) ◽  
pp. 10524
Author(s):  
El Saeed R. Lasheen ◽  
Gehad M. Saleh ◽  
Farrage M. Khaleal ◽  
Mamdooh Alwetaishi

This contribution deals with new geology, petrography, and bulk-rock/mineral chemistry of the poorly studied ultramafics of Wadi Ibib–Wadi Shani (WI–WS) district, South Eastern Desert, Egypt. These ultramafics are dismembered ophiolitic rocks that can be subdivided into serpentinites and serpentinized peridotites. Primary minerals such as olivine and pyroxene are absent in serpentinites, but relics of them occur in serpentinized peridotites. Pseudomorph after olivine is indicated by common hourglass textures with less mesh, whilst schistose bastites reflect a pyroxene pseudomorph. Chromite can be subdivided into Cr-spinel and Al-spinel. Cr-spinel ranges from chromite to magnesochromite in composition, whereas Al-spinel belongs to the spinel field. Cr-spinel includes YCr (Cr/(Cr+Al+Fe+3), YAl (Al/(Al+Cr+Fe+3), and YFe+3 (Fe+3/(Fe+3+Al+Cr), similar to forearc peridotite, whilst Al-spinel is more similar to abyssal peridotite, and may be formed during inanition of subduction processes in proto forearc environments. The main secondary minerals are tremolite, talc, and chlorite—which is subdivided into pycnochlorite and diabantite—and their temperature ranges from 174 to 224 °C. The examined rocks had undergone high partial melting degrees (>25%), as indicated by the Cr# of their unaltered cores (Cr-spinel, >0.6), whole rocks (Al2O3, SiO2, CaO, and MgO), trace and REEs, depleted Na2O, Al2O3, and Cr2O3 of clinopyroxene, and high forsterite content ((Fo = 100 Mg/Mg + Fe), av. 95.23 mol%), consistent with forearc settings.


2021 ◽  
Vol 26 (53) ◽  
pp. 1-17
Author(s):  
Nomuulin Amarbayar ◽  
Noriyoshi Tsuchiya ◽  
Otgonbayar Dandar ◽  
Atsushi Okamoto ◽  
Masaoki Uno ◽  
...  

Serpentinization of ultramafic rocks in ophiolites is key to understanding the global cycle of elements and changes in the physical properties of lithospheric mantle. Mongolia, a central part of the Central Asian Orogenic Belt (CAOB), contains numerous ophiolite complexes, but the metamorphism of ultramafic rocks in these ophiolites has been little studied. Here we present the results of our study of the serpentinization of an ultramafic body in the Manlay Ophiolite, southern Mongolia. The ultramafic rocks were completely serpentinized, and no relics of olivine or orthopyroxene were found. The composition of Cr-spinels [Mg# = Mg/(Mg + Fe2+) = 0.54 and Cr# = Cr/(Cr + Al) = 0.56] and the bulk rock chemistry (Mg/Si = 1.21–1.24 and Al/Si < 0.018) of the serpentinites indicate their origin from a fore-arc setting. Lizardite occurs in the cores and rims of mesh texture (Mg# = 0.97) and chrysotile is found in various occurrences, including in bastite (Mg# = 0.95), mesh cores (Mg# = 0.92), mesh rims (Mg# = 0.96), and later-stage large veins (Mg# = 0.94). The presence of lizardite and chrysotile and the absence of antigorite suggests low-temperature serpentinization (<300 °C). The lack of brucite in the serpentinites implies infiltration of the ultramafic rocks of the Manlay Ophiolite by Si-rich fluids. Based on microtextures and mineral chemistry, the serpentinization of the ultramafic rocks in the Manlay Ophiolite took place in three stages: (1) replacement of olivine by lizardite, (2) chrysotile formation (bastite) after orthopyroxene and as a replacement of relics of olivine, and (3) the development of veins of chrysotile that cut across all previous textures. The complex texture of the serpentinites in the Manlay Ophiolite indicates multiple stages of fluid infiltration into the ultramafic parts of these ophiolites in southern Mongolia and the CAOB.


Sign in / Sign up

Export Citation Format

Share Document