Automatisierte KI-basierte Leckage-Erkennung/Automated AI-based leak detection

2021 ◽  
Vol 111 (03) ◽  
pp. 152-158
Author(s):  
Christian Dierolf ◽  
Alexander Sauer

Obwohl Druckluftleckagen jährlich hohe Kosten verursachen, ist deren automatisierte und aufwandsarme Erkennung immer noch nicht möglich. In diesem Beitrag wird das Konzept einer automatisierten KI-basierten Leckage-Erkennung vorgestellt und auf einen Druckluft-Labordemonstrator angewendet. Erste Validierungen der Vorgehensweise zeigen, welche Potenziale und Herausforderungen sich für das Leckage-Management an Druckluftmaschinen ergeben.   Though incurring substantial costs every year, compressed air leakages still cannot be detected automatically and without much effort. This paper presents a method for an automated AI-based leak detection system, which is applied to a compressed air laboratory demonstrator. First validations of the approach show what potential and challenges there are in the leakage management of compressed air machines.

Author(s):  
Nicole Gailey ◽  
Noman Rasool

Canada and the United States have vast energy resources, supported by thousands of kilometers (miles) of pipeline infrastructure built and maintained each year. Whether the pipeline runs through remote territory or passing through local city centers, keeping commodities flowing safely is a critical part of day-to-day operation for any pipeline. Real-time leak detection systems have become a critical system that companies require in order to provide safe operations, protection of the environment and compliance with regulations. The function of a leak detection system is the ability to identify and confirm a leak event in a timely and precise manner. Flow measurement devices are a critical input into many leak detection systems and in order to ensure flow measurement accuracy, custody transfer grade liquid ultrasonic meters (as defined in API MPMS chapter 5.8) can be utilized to provide superior accuracy, performance and diagnostics. This paper presents a sample of real-time data collected from a field install base of over 245 custody transfer grade liquid ultrasonic meters currently being utilized in pipeline leak detection applications. The data helps to identify upstream instrumentation anomalies and illustrate the abilities of the utilization of diagnostics within the liquid ultrasonic meters to further improve current leak detection real time transient models (RTTM) and pipeline operational procedures. The paper discusses considerations addressed while evaluating data and understanding the importance of accuracy within the metering equipment utilized. It also elaborates on significant benefits associated with the utilization of the ultrasonic meter’s capabilities and the importance of diagnosing other pipeline issues and uncertainties outside of measurement errors.


Author(s):  
Renan Martins Baptista

This paper describes procedures developed by PETROBRAS Research & Development Center to assess a software-based leak detection system (LDS) for short pipelines. These so-called “Low Complexity Pipelines” are short pipeline segments with single-phase liquid flow. Detection solutions offered by service companies are frequently designed for large pipeline networks, with batches and multiple injections and deliveries. Such solutions are sometimes impractical for short pipelines, due to high cost, long tuning procedures, complex instrumentation and substantial computing requirements. The approach outlined here is a corporate approach that optimizes a LDS for shorter lines. The two most popular implemented techniques are the Compensated Volume Balance (CVB), and the Real Time Transient Model (RTTM). The first approach is less accurate, reliable and robust when compared to the second. However, it can be cheaper, simpler, faster to install and very effective, being marginally behind the second one, and very cost-efective. This paper describes a procedure to determine whether one can use a CVB in a short pipeline.


Author(s):  
XianYong Qin ◽  
LaiBin Zhang ◽  
ZhaoHui Wang ◽  
Wei Liang

Reliability, sensitivity and detecting time under practical operational conditions are the most important parameters of a leak detection system. With the development of hardware and software, more and more pipelines are installed with advanced SCADA (Supervisory Control and Data Acquisition) system, so the compatibility of the leak detection system with SCADA system is also becoming important today. Pipeline leakage generates a sudden change in the pipeline pressure and flow. The paper introduces leak detecting methods according to the pipeline pressure wave change. In order to improve the compatibility of the leak detecting system, “OPC (Ole for process Control)” technology is used for obtaining the pressure signals from the distributed data collection system. Special focus is given on analysis of the pressure signals. It is successful to denoise the signals by means of wavelet scale shrinkage, and to capture the leak time tag using wavelet transform modulus maximum for locating the leak position accurately. A leak detecting system is established based on SCADA system. Tests and practical applications show that it locates leak position precisely. Good performance is obtained on both crude oil pipeline and product pipeline.


Author(s):  
Dimitris M. Chatzigeorgiou ◽  
Atia E. Khalifa ◽  
Kamal Youcef-Toumi ◽  
Rached Ben-Mansour

In most cases the deleterious effects associated with the occurrence of leak may present serious problems and therefore leaks must be quickly detected, located and repaired. The problem of leakage becomes even more serious when it is concerned with the vital supply of fresh water to the community. In addition to waste of resources, contaminants may infiltrate into the water supply. The possibility of environmental health disasters due to delay in detection of water pipeline leaks has spurred research into the development of methods for pipeline leak and contamination detection. Leaks in water pipes create acoustic emissions, which can be sensed to identify and localize leaks. Leak noise correlators and listening devices have been reported in the literature as successful approaches to leak detection but they have practical limitations in terms of cost, sensitivity, reliability and scalability. To overcome those limitations the development of an in-pipe traveling leak detection system is proposed. The development of such a system requires a clear understanding of acoustic signals generated from leaks and the study of the variation of those signals with different pipe loading conditions, leak sizes and surrounding media. This paper discusses those signals and evaluates the merits of an in-pipe-floating sensor.


2010 ◽  
Author(s):  
D, Moodie ◽  
L. Costello ◽  
D. McStay

Sign in / Sign up

Export Citation Format

Share Document