Engineering Calculation And Algorithm Of Adaptation Of Parameters Of A Neuro-Fuzzy Controller

2021 ◽  
Vol 03 (09) ◽  
pp. 41-49
Author(s):  
I.H. Siddikov ◽  
◽  
P.I. Kalandarov ◽  
D.B., Yadgarova ◽  
◽  
...  

As part of the study, a control scheme with the adaptation of the coefficients of the neuron-fuzzy regulator implemented. The area difference method used as a training method for the network. It improved by adding a rule base, which allows choosing the optimal learning rate for individual neurons of the neural network. The neural network controller applied as a superstructure of the PID controller in the process control scheme. The dynamic object can function in different modes. This technological process operates in different modes in terms of loading and temperature setpoints. Because of experiments, the power consumption and the amount of time required maintaining the same absorption process, using a conventional PID controller and a neural-network controller evaluated. It concluded that the neuro-fuzzy controller with a superstructure reduced the transient time by 19%.

The Firefly Algorithm is comparison of new optimize procedure based on PSO as tautness. The paper presents the competence and forcefulness of the Firefly algorithm as the optimize concept for a proportional–integral–derivative organizer under various loading conditions. The proposed PID controller is attempt to designed and implemented to frequency-control of a two area interconnected systems. The hidden layer formation is not personalized, as the interest lies only on the reckoning of the weights of the system. In sequence to obtain a practicable report, the weights of the neural network are computational or optimized by minimizing function cost or error. A Firefly Algorithm is an efficient but uncomplicated meta-heuristic optimization technique inspired by expected motion of fireflies towards more light, is used for the preparation of neural network. The simulation report view that the calculation competence of training progression using Firefly Optimization performance with Load frequency control. A study of the output report of the system PID controller and FA based neural network controllers are made for 1% change in load in area 1 and it is found that the proposed controllers ensures a better steady state response of the systems


2011 ◽  
Vol 393-395 ◽  
pp. 44-48
Author(s):  
De Zhi Guo ◽  
Chun Mei Yang ◽  
Yan Ma

In this paper, the detection of sub-nanometer wood flour based on neural network control, how to improved the quality of wood flour is proposed. In the analysis of the advantages of neural network controller, as the auxiliary controller for the PID controller, and improving the control effect of the system. With the contrast of the experimental results, illustrates the quality of the sub-nanometer wood flour has been improved by the neural network control.


2011 ◽  
Vol 110-116 ◽  
pp. 4076-4084
Author(s):  
Hai Cun Du

In this paper, we determine the fuzzy control strategy of inverter air conditioner, the fuzzy control model structure, the neural network and fuzzy control technology, structural design of the fuzzy neural network controller as well as the neural network predictor FNNC NNP. Simulation results show that the fuzzy neural network controller can control the accuracy greatly improved the compressor, and the control system has strong adaptability to achieve a truly intelligent; model of the controller design and implementation of technology are mainly from the practical point of view, which is practical and feasible.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hongwei Li ◽  
Kaide Ren ◽  
Haiying Dong ◽  
Shuaibing Li

The rapid development of wind generation technology has boosted types of the new topology wind turbines. Among the recently invented new wind turbines, the front-end speed regulated (FSR) wind turbine has attracted a lot of attention. Unlike conventional wind turbine, the speed regulation of the FSR machines is realized by adjusting the guide vane angle of a hydraulic torque converter, which is converterless and much more grid-friendly as the electrically excited synchronous generator (EESG) is also adopted. Therefore, the drive chain control of the wind turbine owns the top priority. To ensure that the FSR wind turbine performs as a general synchronous generator, this paper firstly modeled the drive chain and then proposed to use the variable-universe fuzzy approach for the drive chain control. It helps the wind generator operate in a synchronous speed and outperform other types of wind turbines. The multipopulation genetic algorithm (MPGA) is adopted to intelligently optimize the parameters of the expansion factor of the designed variable-universe fuzzy controller (VUFC). The optimized VUFC is applied to the speed control of the drive chain of the FSR wind turbine, which effectively solves the contradiction between the low precision of the fuzzy controller and the number of rules in the fuzzy control and the control accuracy. Finally, the main shaft speed of the FSR wind turbine can reach a steady-state value around 1500 rpm. The response time of the results derived using VUFC, compared with that derived from a neural network controller, is only less than 0.5 second and there is no overshoot. The case study with the real machine parameter verifies the effectiveness of the proposal and results compared with conventional neural network controller, proving its outperformance.


2012 ◽  
Vol 241-244 ◽  
pp. 1953-1958
Author(s):  
Qing Fu Kong ◽  
Fan Ming Zeng ◽  
Jie Chang Wu ◽  
Jia Ming Wu

Intelligent vehicle is an attractive solution to the traffic problems caused by automobiles. An experimental autonomous driving system based on a slot car set is designed and realized in the paper. With the application of a wireless camera equipped on the slot car, the track information is acquired and sent to the controlling computer. A backpropogation (BP) neural network controller is built to imitate the way of player’s thinking. After being trained, the neural network controller can give the proper voltage instructions to the direct current (DC) motor of the slot car according to different track conditions. Test results prove that the development of the autonomous driving system is successful.


Author(s):  
Manish Kumar ◽  
Devendra P. Garg

Design of an efficient fuzzy logic controller involves the optimization of parameters of fuzzy sets and proper choice of rule base. There are several techniques reported in recent literature that use neural network architecture and genetic algorithms to learn and optimize a fuzzy logic controller. This paper presents methodologies to learn and optimize fuzzy logic controller parameters that use learning capabilities of neural network. Concepts of model predictive control (MPC) have been used to obtain optimal signal to train the neural network via backpropagation. The strategies developed have been applied to control an inverted pendulum and results have been compared for two different fuzzy logic controllers developed with the help of neural networks. The first neural network emulates a PD controller, while the second controller is developed based on MPC. The proposed approach can be applied to learn fuzzy logic controller parameter online via the use of dynamic backpropagation. The results show that the Neuro-Fuzzy approaches were able to learn rule base and identify membership function parameters accurately.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3423 ◽  
Author(s):  
El Barhoumi ◽  
Ikram Ben Belgacem ◽  
Abla Khiareddine ◽  
Manaf Zghaibeh ◽  
Iskander Tlili

This paper presents a simple strategy for controlling an interleaved boost converter that is used to reduce the current fluctuations in proton exchange membrane fuel cells, with high impact on the fuel cell lifetime. To keep the output voltage at the desired reference value under the strong fluctuations of the fuel flow rate, fuel supply pressure, and temperature, a neural network controller is developed and implemented using Matlab-Simulink (R2012b, MathWorks limited, London, UK). The advantage of this controller resides in its simplicity, where limited number of tests are carried out using Matlab-Simulink to construct it. To investigate the robustness of the proposed converter and the neural network controller, strong variations of the fuel flow rate, fuel supply pressure, temperature and air supply pressure are applied to both the fuel cell and the neural network controller of the converter. The simulation results show the effectiveness and the robustness of the both the proposed controller and converter to control the load voltage and minimize the current and voltage ripples. As a result of that, fuel cell current oscillations are considerably reduced on the one hand, while on the other hand, the load voltage is stabilized during transient variations of the fuel cell inputs.


2010 ◽  
Vol 121-122 ◽  
pp. 1038-1043
Author(s):  
Wei Wang ◽  
Xin Jian Shan ◽  
Shi Min Wei

Owing to the nonlinear characteristic of a novel type of translational meshing motor with model uncertainties, a model reference control system which consists of a neural network and a fuzzy controller is used. The torque model is identified based on BP neural network, and then Fuzzy controller works as the controller. The description of the control system and training procedure of the neural network are given. The test results obtained for a torque control scheme suitable for the control of the motor are also presented to verify the effectiveness of the proposed nonlinear control scheme. It has been found that the fuzzy control system is able to work reliably.


Sign in / Sign up

Export Citation Format

Share Document