scholarly journals Pb-Pb zircon dating of tuff horizons inthe Cyrtograptus Shale (Wenlock, Silurian) of Bornholm

2002 ◽  
Vol 49 ◽  
pp. 1-8
Author(s):  
Karsten Obst ◽  
Gerhard Katzung ◽  
Jörg Maletz ◽  
Antje Böhnke

Waterlain fallout ashes are interbedded in the upper part of the Cyrtograptus Shale of Bornholm, theyoungest preserved member of the Lower Palaeozoic sequence at the southern coast of the island.Graptolite faunas indicate that these tuffaceous sediments belong to the Cyrtograptus lundgreni Zonedeposited during Late Wenlock. A 207Pb/206Pb mean age of 430 ± 1.9 Ma obtained by evaporation of idiomorphic single zircons from the tuff layers supports this observation. Geochemical studies of the pyroclastic rocks point to an explosive, calc-alkaline magmatic arc volcanism which probably occurred along or slightly south of the Tornquist-Teisseyre Lineament, and could have been induced by the collision of Avalonia with the southern margin of Baltica during the Silurian. This assumption is supported by the contemporaneous deposition of bentonites on the Swedish island of Gotland which might represent a distal facies of these fallouts. Further, the subduction-related volcanic activity is interpreted as a fingerprint for closing of the Tornquist Ocean during the Caledonian orogeny.

1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


2017 ◽  
Vol 47 (2) ◽  
pp. 275-299 ◽  
Author(s):  
Bruna Karine Correa Nogueira ◽  
Paulo Sergio de Sousa Gorayeb ◽  
Elton Luiz Dantas ◽  
Rafael Estumano Leal ◽  
Marco Antonio Galarza

ABSTRACT: The São Luís Cráton comprises an area between northeast Pará state and northwest Maranhão that exposes Paleoproterozoic granitic suites and meta-volcanosedimentary sequences. In the east of this geotectonic unit, about 70 km south of São Luís, there is a portion of the São Luís Craton, represented by the intrusive Rosario Suite (RS). This work is focused on rocks of this suite, including petrographic, lithochemical and geochronological studies to understand the crustal evolution of these granitoid rocks. The rock spectrum varies from tonalitic to granodioritic, quartz dioritic and granitic compositions, and there are partial structural and mineralogical changes related to deformation along transcurrent shear zones. The geochemical studies show granitic metaluminous compositions of the calc-alkaline series with I-type affinity typical of magmatic arc. Rare earth elements show marked fractionation and slight Eu positive or negative anomalies (Eu/Eu* = 0.82 to 1.1). Zircon U-Pb data provided consistent ages of 2165 ± 7 Ma, 2170 ± 7 Ma, 2170 ± 7 Ma, 2161 ± 4 Ma and 2175 ± 8 Ma, dating emplacement of these granitoids as Paleoproterozoic (Rhyacian). Sm-Nd isotopic data provided model ages (TDM) of 2.21 to 2.31 Ga with positive values of εNd +1.9 to +3.2 (t = 2.17 Ga), indicating predominantly Rhyacian crustal sources for the parental magmas, similar to those ones found in other areas of the São Luís Craton. The data, integrated with published geological and geochronological information, indicate the occurrence of an important continental crust formation event in this area. The Paleoproterozoic evolution between 2.17 and 2.15 Ga is related to the Transamazonian orogeny. The granitoids of the Rosario Suite represent the main phase of continental arc magmatism that has continuity in other parts of the São Luís Craton and can be correlated with Rhyacian accretionary magmatism in the northwestern portion of the Amazonian Craton that amalgamated Archean terrains during the Transamazonian orogeny.


2016 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Hananto Kurnio ◽  
Ulrich Schwarz Schampera

Mineralization have been discovered on Tabuan Island, Semangko Bay, South Sumatera, Indonesia. Tabuan Island belongs to the Neogene Sunda-Banda magmatic arc system. Tabuan Island is a tectonic horst structure which belongs to the subduction-related, magmatically active Barisan zone along the active continental margin of western Sumatera. Basaltic-andesitic volcanics of the late Oligocene to earliest Miocene Hulusimpang Formation are distributed in a broad zone along and subparallel to the regional Semangko Fault and are hosts for several epithermal-style auriferous deposits. The occurrence of hydrothermal mineralization was first suggested from seismic identification of small intrusive bodies which form elongated northwest-southeast ridges passing through the island. Surface sampling campaigns on the island revealed significant hydrothermal alteration and mineralization with pervasive occurrences of sulphide minerals. Detailed mineralogical and geochemical studies at the Federal Institute for Geoscience and Natural Resources show pronounced disseminations and vein-type mineralization. Mineralization shows moderate enrichments in Au, Ag, Zn, Pb, Cu, As, Sb, Ba, and Mn. The association of subaerial island arc volcanism and subvolcanic intrusive bodies, the regional extensional and strike-slip structural regime, and the occurrence of epithermal-style alteration and mineralization in the same volcanic sequence along the coastal zone of Semangko Bay and on Tabuan Island reveal the great potential of this region for epithermal type Au-Ag and base metal deposits. On Tabuan Island, delineation of structural blocks and fault systems suggests that normal faults and margins of grabens may have acted as fluid channelling structures. Key words: structural geology, mineralization, Tabuan Island, Semangko Bay


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Andrew Hurst ◽  
Michael Wilson ◽  
Antonio Grippa ◽  
Lyudmyla Wilson ◽  
Giuseppe Palladino ◽  
...  

Mudstone samples from the Moreno (Upper Cretaceous-Paleocene) and Kreyenhagen (Eocene) formations are analysed using X-ray diffraction (XRD) and X-ray fluorescence (XRF) to determine their mineralogy. Smectite (Reichweite R0) is the predominant phyllosilicate present, 48% to 71.7% bulk rock mineralogy (excluding carbonate cemented and highly bio siliceous samples) and 70% to 98% of the <2 μm clay fraction. Opal CT and less so cristobalite concentrations cause the main deviations from smectite dominance. Opal A is common only in the Upper Kreyenhagen. In the <2 μm fraction, the Moreno Fm is significantly more smectite-rich than the Kreyenhagen Fm. Smectite in the Moreno Fm was derived from the alteration of volcaniclastic debris from contemporaneous rhyolitic-dacitic magmatic arc volcanism. No tuff is preserved. Smectite in the Kreyenhagen Fm was derived from intense sub-tropical weathering of granitoid-dioritic terrane during the hypothermal period in the early to mid-Eocene; the derivation from local volcanism is unlikely. All samples had chemical indices of alteration (CIA) indicative of intense weathering of source terrane. Ferriferous enrichment and the occurrence of locally common kaolinite are contributory evidence for the intensity of weathering. Low concentration (max. 7.5%) of clinoptilolite in the Lower Kreyenhagen is possibly indicative of more open marine conditions than in the Upper Kreyenhagen. There is no evidence of volumetrically significant silicate diagenesis. The main diagenetic mineralisation is restricted to low-temperature silica phase transitions.


2021 ◽  
pp. 1-24
Author(s):  
Petros Koutsovitis ◽  
Konstantinos Soukis ◽  
Panagiotis Voudouris ◽  
Stylianos Lozios ◽  
Theodoros Ntaflos ◽  
...  

2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


1981 ◽  
Vol 104 ◽  
pp. 5-46
Author(s):  
A.K Higgins ◽  
J.D Friderichsen ◽  
T Thyrsted

Results are presented of regional geological reconnaissance and local detailed studies. The new fjeld work, together with isotopic studies, has made possibie a provisional reassignment of metamorphic, plutonic and deformational events recorded in the different rock units to Archaean and Proterozoic, as well as Caledonian, orogenic episodes. The infracrustal elements of the 'central metamorphic complex' are considered to be essentiaIly Archaean - early Proterozoic basement gneiss complexes, and are overlain by middle Proterozoic metasedimentary sequences. The late Proterozoic and Lower Palaeozoic sediments have arestricted outcrop at present levels of exposure. During the Caledonian orogeny the late Proterozoic cover sequences appear to have become detatched from their older metamorphic 'basernent' along a decollement surface, but the nature of this contact is usually obscured by Caledonian metamorphic effects. The main characteristics of the different rock units are described. Detailed relationships are illustrated by studies of four areas: Nunatakgletscher-Eremitdal, Knækdalen and adjacent areas, Kap Hediund, and Tærskeldal-Forsblads Fjord-Randenæs.


2020 ◽  
Author(s):  
Ezgi Sağlam ◽  
Turgut Duzman ◽  
Aral I. Okay

&lt;p&gt;The Pontide Upper Cretaceous magmatic arc can be traced for over 1000 km along the southern Black Sea coast from Georgia to Bulgaria. &amp;#160;The arc extrusive sequence is well-exposed in the &amp;#304;&amp;#287;neada region in Thrace close to the Bulgarian border. The Upper Cretaceous sequence in &amp;#304;&amp;#287;neada region overlies the schists and phyllites of Strandja Massif with an unconformity. It &amp;#160;has a thickness of over 700 meters and consists at the base of Cenomanian shallow marine sandy limestone, which pass up into pelagic limestone, marn and volcanogenic siltstone with Turonian planktonic foraminifera, including &lt;em&gt;Marginotruncana pseudolinneana&lt;/em&gt;, &lt;em&gt;Marginotruncana marginata&lt;/em&gt;, &lt;em&gt;Whitenella&lt;/em&gt; sp., &lt;em&gt;Whitenella praehelvetica&lt;/em&gt;, &lt;em&gt;Muricohedbergella&lt;/em&gt; sp.&amp;#160; This indicates that the arc volcanism in the region started in the Turonian. The pelagic limestone, marl, and calcareous siltstone series passes up into a volcanic-volcaniclastic sequence of andesitic tuff, lapillistone, agglomerate, andesitic and basaltic-andesitic lava flows. The volcaniclastic rocks are intercalated with lava flows and with rare pelagic limestone and shale beds. Although it is disrupted by several faults, the volcanic sequence can be traced from older to younger along the coast of &amp;#304;&amp;#287;neada. The sequence starts with andesitic volcaniclastic rocks and lava flows, and changes to basaltic-andesitic and then, again to andesitic rocks. The ocean floor alteration, which is found in all volcaniclastic and volcanic rock samples, and the intercalated pelagic limestones show that the rocks were deposited in deep submarine conditions in an intra-arc to fore-arc environment. Campanian (80.6 &amp;#177;1.5 Ma) U-Pb zircon ages, which are obtained from the andesitic tuffs at the base of the volcanic-volcaniclastic sequence, indicate a continued magmatism from Turonian to Campanian.&lt;/p&gt;


2013 ◽  
Vol 385 (1) ◽  
pp. 31-64 ◽  
Author(s):  
Susanne M. Straub ◽  
Georg F. Zellmer ◽  
Arturo Gómez-Tuena ◽  
Ramon Espinasa-Pereña ◽  
Ana Lillian Martin-del Pozzo ◽  
...  

Author(s):  
Antônio Carlos Pedrosa-Soares ◽  
Carlos Maurício Noce ◽  
Fernando Flecha de Alkmim ◽  
Luiz Carlos da Silva ◽  
Marly Babinski ◽  
...  

The Araçuaí Fold Belt was defined as the southeastern limit of the São Francisco Craton in the classicalpaper published by Fernando Flávio Marques de Almeida in 1977. This keystone of the Brazilian geologicliterature catalyzed important discoveries, such as of Neoproterozoic ophiolites and a calc-alkaline magmaticarc, related to the Araçuaí Belt and paleotectonic correlations with its counterpart located in Africa (the WestCongo Belt), that provided solid basis to define the Araçuaí-West-Congo Orogen by the end of the 1990thdecade. After the opening of the Atlantic Ocean in Cretaceous times, two thirds of the Araçuaí-West-CongoOrogen remained in the Brazil side, including records of the continental rift and passive margin phases ofthe precursor basin, all ophiolite slivers and the whole orogenic magmatism formed from the pre-collisionalto post-collisional stages. Thus, the name Araçuaí Orogen has been applied to the Neoproterozoic-Cambrianorogenic region that extends from the southeastern edge of the São Francisco Craton to the Atlantic coastlineand is roughly limited between the 15º and 21º S parallels. After 30 years of systematic geological mappingtogether with geochemical and geochronological studies published by many authors, all evolutionary stagesof the Araçuaí Orogen can be reasonably interpreted. Despite the regional metamorfism and deformation, thefollowing descriptions generally refer to protoliths. All mentioned ages were obtained by U-Pb method onzircon. The Macaúbas Group records rift, passive margin and oceanic environments of the precursor basinof the Araçuaí Orogen. From the base to the top and from proximal to distal units, this group comprises thepre-glacial Duas Barras and Rio Peixe Bravo formations, and the glaciogenic Serra do Catuni, Nova Auroraand Lower Chapada Acauã formations, related to continental rift and transitional stages, and the diamictitefreeUpper Chapada Acauã and Ribeirão da Folha formations, representing passive margin and oceanicenvironments. Dates of detrital zircon grains from Duas Barras sandstones and Serra do Catuni diamictitessuggest a maximum sedimentation age around 900 Ma for the lower Macaúbas Group, in agreement withages yielded by the Pedro Lessa mafic dikes (906 ± 2 Ma) and anorogenic granites of Salto da Divisa (875 ±9 Ma). The thick diamictite-bearing marine successions with sand-rich turbidites, diamictitic iron formation,mafic volcanic rocks and pelites (Nova Aurora and Lower Chapada Acauã formations) were depositedfrom the rift to transitional stages. The Upper Chapada Acauã Formation consists of a sand-pelite shelfsuccession, deposited after ca. 864 Ma ago in the proximal passive margin. The Ribeirão da Folha Formationmainly consists of sand-pelite turbidites, pelagic pelites, sulfide-bearing cherts and banded iron formations,representing distal passive margin to oceanic sedimentation. Gabbro and dolerite with plagiogranite veinsdated at ca. 660 Ma, and ultramafic rocks form tectonic slices of oceanic lithosphere thrust onto packagesof the Ribeirão da Folha Formation. The pre-collisional, calc-alkaline, continental magmatic arc (G1 Suite,630-585 Ma) consists of tonalites and granodiorites, with minor diorite and gabbro. A volcano-sedimentarysuccession of this magmatic arc includes pyroclastic and volcaniclastic rocks of dacitic composition datedat ca. 585 Ma, ascribed to the Palmital do Sul and Tumiritinga formations (Rio Doce Group), depositedfrom intra-arc to fore-arc settings. Detrital zircon geochronology suggests that the São Tomé wackes (RioDoce Group) represent intra-arc to back-arc sedimentation after ca. 594 Ma ago. The Salinas Formation, aconglomerate-wacke-pelite association located to northwest of the magmatic arc, represents synorogenicsedimentation younger than ca. 588 Ma. A huge zone of syn-collisional S-type granites (G2 Suite, 582-560Ma) occurs to the east and north of the pre-collisional magmatic arc, northward of latitude 20º S. Partialmelting of G2 granites originated peraluminous leucogranites (G3 Suite) from the late- to post-collisionalstages. A set of late structures, and the post-collisional intrusions of the S-type G4 Suite (535-500 Ma) andI-type G5 Suite (520-490 Ma) are related to the gravitational collapse of the orogen. The location of themagmatic arc, roughly parallel to the zone with ophiolite slivers, from the 17º30’ S latitude southwardssuggests that oceanic crust only developed along the southern segment of the precursor basin of the Araçuaí-West-Congo Orogen. This basin was carved, like a large gulf partially floored by oceanic crust, into the SãoFrancisco-Congo Paleocontinent, but paleogeographic reconstructions show that the Bahia-Gabon cratonicbridge (located to the north of the Araçuaí Orogen) subsisted since at least 1 Ga until the Atlantic opening.This uncommon geotectonic scenario inspired the concept of confined orogen, quoted as a new type ofcollisional orogen in the international literature, and the appealing nutcracker tectonic model to explain theAraçuaí-West-Congo Orogen evolution. 


Sign in / Sign up

Export Citation Format

Share Document