Upper Cretaceous Stratigraphy and Volcanism in the İğneada region, Pontides, NW Turkey

Author(s):  
Ezgi Sağlam ◽  
Turgut Duzman ◽  
Aral I. Okay

<p>The Pontide Upper Cretaceous magmatic arc can be traced for over 1000 km along the southern Black Sea coast from Georgia to Bulgaria.  The arc extrusive sequence is well-exposed in the İğneada region in Thrace close to the Bulgarian border. The Upper Cretaceous sequence in İğneada region overlies the schists and phyllites of Strandja Massif with an unconformity. It  has a thickness of over 700 meters and consists at the base of Cenomanian shallow marine sandy limestone, which pass up into pelagic limestone, marn and volcanogenic siltstone with Turonian planktonic foraminifera, including <em>Marginotruncana pseudolinneana</em>, <em>Marginotruncana marginata</em>, <em>Whitenella</em> sp., <em>Whitenella praehelvetica</em>, <em>Muricohedbergella</em> sp.  This indicates that the arc volcanism in the region started in the Turonian. The pelagic limestone, marl, and calcareous siltstone series passes up into a volcanic-volcaniclastic sequence of andesitic tuff, lapillistone, agglomerate, andesitic and basaltic-andesitic lava flows. The volcaniclastic rocks are intercalated with lava flows and with rare pelagic limestone and shale beds. Although it is disrupted by several faults, the volcanic sequence can be traced from older to younger along the coast of İğneada. The sequence starts with andesitic volcaniclastic rocks and lava flows, and changes to basaltic-andesitic and then, again to andesitic rocks. The ocean floor alteration, which is found in all volcaniclastic and volcanic rock samples, and the intercalated pelagic limestones show that the rocks were deposited in deep submarine conditions in an intra-arc to fore-arc environment. Campanian (80.6 ±1.5 Ma) U-Pb zircon ages, which are obtained from the andesitic tuffs at the base of the volcanic-volcaniclastic sequence, indicate a continued magmatism from Turonian to Campanian.</p>

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Andrew Hurst ◽  
Michael Wilson ◽  
Antonio Grippa ◽  
Lyudmyla Wilson ◽  
Giuseppe Palladino ◽  
...  

Mudstone samples from the Moreno (Upper Cretaceous-Paleocene) and Kreyenhagen (Eocene) formations are analysed using X-ray diffraction (XRD) and X-ray fluorescence (XRF) to determine their mineralogy. Smectite (Reichweite R0) is the predominant phyllosilicate present, 48% to 71.7% bulk rock mineralogy (excluding carbonate cemented and highly bio siliceous samples) and 70% to 98% of the <2 μm clay fraction. Opal CT and less so cristobalite concentrations cause the main deviations from smectite dominance. Opal A is common only in the Upper Kreyenhagen. In the <2 μm fraction, the Moreno Fm is significantly more smectite-rich than the Kreyenhagen Fm. Smectite in the Moreno Fm was derived from the alteration of volcaniclastic debris from contemporaneous rhyolitic-dacitic magmatic arc volcanism. No tuff is preserved. Smectite in the Kreyenhagen Fm was derived from intense sub-tropical weathering of granitoid-dioritic terrane during the hypothermal period in the early to mid-Eocene; the derivation from local volcanism is unlikely. All samples had chemical indices of alteration (CIA) indicative of intense weathering of source terrane. Ferriferous enrichment and the occurrence of locally common kaolinite are contributory evidence for the intensity of weathering. Low concentration (max. 7.5%) of clinoptilolite in the Lower Kreyenhagen is possibly indicative of more open marine conditions than in the Upper Kreyenhagen. There is no evidence of volumetrically significant silicate diagenesis. The main diagenetic mineralisation is restricted to low-temperature silica phase transitions.


Stratigraphy ◽  
2018 ◽  
Vol 15 (1) ◽  
pp. 47-66
Author(s):  
Elham Davtalab ◽  
Mohammad Vahidinia ◽  
Ebrahim Ghasemi-Nejad ◽  
Alireza Ashouri

2019 ◽  
Vol 59 (6) ◽  
pp. 1074-1085
Author(s):  
E. A. Sokolova

The article analyzes own data on the species composition of shells of planktonic foraminifera from the Upper Cretaceous sediments of the Indian Oceans, as well as from the sections of the offshore seas of Australia. The species of planktonic foraminifera are grouped and arranged in a climatic series. An analysis of the change in the systematic composition of foraminifers made it possible to distinguish periods of extreme and intermediate climatic states in the Late Cretaceous.


1962 ◽  
Vol S7-IV (3) ◽  
pp. 362-379
Author(s):  
Alain Combes

Abstract The Boutenac hills in the northeastern Corbieres region of southern France, are part of the autochthonous foreland of the eastern Corbieres nappe. They are an isolated massif between the Paleozoic formations of the Alaric mountain on the west, and the Jurassic and Cretaceous formations of the Fontfroide chain on the east, entirely surrounded by alluvium. Structurally, they comprise Mesozoic formations on the east thrust over the Eocene on the west, on a fault that is the prolongation of the Saint Chinian frontal fault to the northeast. The Mesozoic formations comprise upper (?) Triassic shale and dolomite, sandy limestone, dolomite, and limestone; Jurassic red sandstones and shales; and upper Cretaceous transgressive clastics. The Eocene is limestone and marl overlain by continental conglomerate and molasse, transgressive on the west upon the Alaric Paleozoics. Folding and thrust and normal faulting are important in the structure.


1995 ◽  
Vol 7 (1) ◽  
pp. 99-113 ◽  
Author(s):  
J.L. Smellie ◽  
M. Liesa ◽  
J.A. Muñoz ◽  
F. Sàbat ◽  
R. Pallàs ◽  
...  

Livingston Island contains several, distinctive sedimentary and volcanic sequences, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The turbiditic, late Palaeozoic–early Mesozoic Miers Bluff Formation (MBF) is divided into the Johnsons Dock and Napier Peak members, which may represent sedimentation in upper and lower mid-fan settings, respectively, prior to pre-late Jurassic polyphase deformation (dominated by open folding). The Moores Peak breccias are formed largely of coarse clasts reworked from the MBF. The breccias may be part of the MBF, a separate unit, or part of the Mount Bowles Formation. The structural position is similar to the terrigenous Lower Jurassic Botany Bay Group in the northern Antarctic Peninsula, but the precise stratigraphical relationships and age are unknown. The (?) Cretaceous Mount Bowles Formation is largely volcanic. Detritus in the volcaniclastic rocks was formed mainly during phreatomagmatic eruptions and redeposited by debris flows (lahars), whereas rare sandstone interbeds are arkosic and reflect a local provenance rooted in the MBF. The Pleistocene–Recent Inott Point Formation is dominated by multiple, basaltic tuff cone relicts in which distinctive vent and flank sequences are recognized. The geographical distribution of the Edinburgh Hill Formation is closely associated with faults, which may have been reactivated as dip-slip structures during Late Cenozoic extension (arc splitting).


2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


1987 ◽  
Vol 51 (362) ◽  
pp. 553-559 ◽  
Author(s):  
E. Gökten ◽  
P. A. Floyd

AbstractThe volcanic rocks of the Şarkışla area in northeastern central Anatolia are associated with volcaniclastics, turbiditic limestones and pelagic-hemipelagic shales of Upper Cretaceous-Palaeocene age. A preliminary geochemical study was undertaken to constrain local tectonic models, and due to the variable altered nature of the volcanics, determine the lithological composition and magma type. Chemically the volcanics are an andesite-dominated suite of calc-alkali lavas, probably developed adjacent to an active continental margin in a local (ensialic back-arc?) basinal area. The volcanic activity was probably related to a postulated magmatic arc just south of the area during the early Tertiary.


1994 ◽  
Vol 31 (2) ◽  
pp. 435-446 ◽  
Author(s):  
Pierre A. Cousineau ◽  
Pierre St-Julien

Two new formations, the Frontière and Etchemin formations, have been found to lie below the Beauceville and Saint-Victor formations, the two known formations of the Magog Group. The Frontière Formation, at the base of the group, is made up of centimeter-thick beds of medium- to coarse-grained litharenite and of greyish green mudstone; the sandstone, greyish green, contains abundant felsic volcanic rock fragments and chromite grains. The Etchemin Formation is composed mostly of centimeter-thick dusky yellow green siliceous mudstone; at the base, there is also a purple mudstone, and meter-thick beds of dusky green volcaniclastic rocks rich in intermediate to felsic volcanic rock fragments and crystals of feldspar and quartz occur near its top. The Beauceville Formation consists of interbedded centimeter-thick beds of black clayslate and centimeter- to meter-thick beds of black volcaniclastic rocks. The Saint-Victor Formation consists of classic turbidite beds with few meter-thick yellowish volcaniclastic rock beds similar to those of the Beauceville Formation; the sandstone is a litharenite rich in quartz grains and sedimentary rock fragments. Most rocks of the Frontière and Etchemin formations as well as the volcaniclastic rocks of the Beauceville and Saint-Victor formations were derived from a magmatic arc located to the southeast. However, the shale of the Beauceville Formation and the turbidites of the Saint-Victor Formation were derived from an orogenic source located to the northwest. The Magog Group is located between the Saint-Daniel Mélange and the Ascot Complex interpreted as remnants of an accretionary prism and a magmatic arc, respectively. The sediments of this group were thus deposited in a fore-arc basin active during the Taconian orogeny of the Middle to Late Ordovician.


1975 ◽  
Vol 12 (12) ◽  
pp. 2021-2035 ◽  
Author(s):  
Mel R. Stauffer ◽  
A. C. Mukherjee ◽  
J. Koo

The Amisk Group (Aphebian?) near Flin Flon, Manitoba, consists dominantly of andesitic lava flows and pyroclastic rocks, with minor basalt, dacite, rhyolite, and epiclastic rocks. These have undergone regional metamorphism ranging from chlorite to garnet zone, and locally have been sheared intensely.Major element chemical analyses indicate that intensely sheared Amisk rocks near the Flin Flon and Schist Lake Cu–Zn ore bodies have undergone considerable metasomatism. The unsheared, regionally metamorphosed rocks have undergone significantly less metasomatism, and the compositions of the least-altered of these suggest an island arc tholeiite chemical affinity.The lithology, primary structures, and major-element compositions of lavas within the Amisk Group suggest deposition may have been in an island arc environment.


Sign in / Sign up

Export Citation Format

Share Document