scholarly journals Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

2019 ◽  
Vol 10 ◽  
pp. 606-616 ◽  
Author(s):  
Vidar Gudmundsson ◽  
Hallmann Gestsson ◽  
Nzar Rauf Abdullah ◽  
Chi-Shung Tang ◽  
Andrei Manolescu ◽  
...  

In this work, we theoretically model the time-dependent transport through an asymmetric double quantum dot etched in a two-dimensional wire embedded in a far-infrared (FIR) photon cavity. For the transient and the intermediate time regimes, the current and the average photon number are calculated by solving a Markovian master equation in the dressed-states picture, with the Coulomb interaction also taken into account. We predict that in the presence of a transverse magnetic field the interdot Rabi oscillations appearing in the intermediate and transient regime coexist with slower non-equilibrium fluctuations in the occupation of states for opposite spin orientation. The interdot Rabi oscillation induces charge oscillations across the system and a phase difference between the transient source and drain currents. We point out a difference between the steady-state correlation functions in the Coulomb blocking and the photon-assisted transport regimes.






1989 ◽  
Vol 5 (2) ◽  
pp. 279-282 ◽  
Author(s):  
A. Lorke ◽  
A.D. Wieck ◽  
U. Merkt ◽  
G. Weimann ◽  
W. Schlapp


1996 ◽  
Vol 10 (26) ◽  
pp. 1311-1322
Author(s):  
J. SEKE

The significance of the counter-rotating terms in the polyatomic Jaynes-Cummings model with cavity losses is demonstrated. Numerical results for the time evolution of the atomic population inversion and dipole moment for an initial Fock-state field with different photon numbers are presented for various cavity dampings. The appearance of new steady states for the population inversion and the mean-photon number under the influence of the counter-rotating terms is pointed out. Namely, as is shown, the presence of “virtual photons”, produced by the counter-rotating terms, leads to these effects.



2018 ◽  
Vol 9 ◽  
pp. 1527-1535
Author(s):  
Jun-Hui Zheng ◽  
Dao-Xin Yao ◽  
Zhi Wang

Background: A Majorana bound state is a superconducting quasiparticle that is the superposition of particle and hole with equal amplitude. We propose a verification of this amplitude equality by analyzing the spatial Rabi oscillations of the quantum states of a quantum dot that is tunneling-coupled to the Majorana bound states. Results: We find two resonant Rabi driving energies that correspond to the energy splitting due to the coupling of two spatially separated Majorana bound states. The resulting Rabi oscillating frequencies from these two different resonant driving energies are identical for the Majorana bound states, while different for ordinary Andreev bound states. We further study a double-quantum-dot setup and find a nonlocal quantum correlation between them that is mediated by two Majorana bound states. This nonlocal correlation has the signature of additional resonant driving energies. Conclusion: Our method can be used to distinguish between Majorana bound states and Andreev bound states. It also gives a precise measurement of the energy splitting between two Majorana bound states.



2021 ◽  
Vol 11 (13) ◽  
pp. 5948
Author(s):  
Andrea Doria

The present work analyses a hybrid free electron laser (FEL) scheme where the oscillator is based on a radiation source operating with a slow-wave guiding structure as, for instance, a Cerenkov FEL or a Smith–Purcell FEL. Such devices, often running in transverse magnetic (TM) modes, present a longitudinal electric field which can easily affect the longitudinal electrons’ velocities, inducing an energy modulation on the beam. Such a modulation, properly controlled, can induce a strong radiation emission in a magnetic undulator properly designed to operate as a radiator. General considerations will be exposed together with a practical numerical example in the far infrared region of the spectrum.



Sign in / Sign up

Export Citation Format

Share Document