scholarly journals Counterion effects on nano-confined metal–drug–DNA complexes

2016 ◽  
Vol 7 ◽  
pp. 62-67
Author(s):  
Nupur Biswas ◽  
Sreeja Chakraborty ◽  
Alokmay Datta ◽  
Munna Sarkar ◽  
Mrinmay K Mukhopadhyay ◽  
...  

We have explored morphology of DNA molecules bound with Cu complexes of piroxicam (a non-steroidal anti-inflammatory drug) molecules under one-dimensional confinement of thin films and have studied the effect of counterions present in a buffer. X-ray reflectivity at and away from the Cu K absorption edge and atomic force microscopy studies reveal that confinement segregates the drug molecules preferentially in a top layer of the DNA film, and counterions enhance this segregation.

1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


1999 ◽  
Vol 38 (4) ◽  
pp. 684 ◽  
Author(s):  
Victor E. Asadchikov ◽  
Angela Duparré ◽  
Stefan Jakobs ◽  
Albert Yu. Karabekov ◽  
Igor V. Kozhevnikov ◽  
...  

2008 ◽  
Vol 8 (4) ◽  
pp. 1757-1761 ◽  
Author(s):  
Ajeet Kaushik ◽  
Jitendra Kumar ◽  
M. K. Tiwari ◽  
R. Khan ◽  
B. D. Malhotra ◽  
...  

Polyaniline (PANI)–ZnO nanocomposite thin film has been successfully fabricated on glass substrates by using vacuum deposition technique. The as-grown PANI–ZnO nanocomposite thin films have been characterized using X-ray diffraction, Scanning Electron Microscopy, Atomic Force Microscopy, UV-visible spectrophotometer and Fourier Transform Infrared (FTIR) spectroscopy, respectively. X-ray diffraction of as-grown film shows the reflection of ZnO nanoparticles along with a broad peak of PANI. The surface morphology of nanocomposite films has been investigated using scanning electron microscopy and atomic force microscopy. The hypsochromic shift of the UV absorption band corresponding to π–π* transition in polymeric chain of PANI and a band at 504 cm –1 due to ZnO nanoparticles has been observed in the FTIR spectra. The hydrogen bonding between the imine group of PANI and ZnO nanoparticle has been confirmed from the presence of the absorbance band at 1151 cm–1 in the FTIR spectra of the nanocomposite thin films.


2013 ◽  
Vol 210 (11) ◽  
pp. 2416-2422 ◽  
Author(s):  
Daniele Pelliccia ◽  
Sasikaran Kandasamy ◽  
Michael James

2001 ◽  
Vol 672 ◽  
Author(s):  
G. Wei ◽  
J. Du ◽  
A. Rar ◽  
J. A. Barnard

ABSTRACTThe nanoindentation behavior of DC magnetron sputtered 10 nm Cu and 10 nm Cu/2 nm Cr thin films deposited on Si (100) has been studied using a Hysitron nanomechanical system. X- ray diffraction and X-ray reflectivity were used to measure the film structure and film thickness, respectively. The grain size and orientation of Cu and Cu/Cr thin films were measured by TEM. Atomic force microscopy (AFM) was used to evaluate the surface morphology and roughness. At the same load, the nanoindentaion displacement of Cu/Cr is smaller than that for Cu, i.e., the 2nm thick Cr underlayer enhances the hardness of Cu. X-ray, TEM, and AFM results show that the grain size of Cu/Cr (< 15 nm) is actually larger than Cu (∼ 3 nm) indicating that the inverse Hall-Petch relationship may be operative.


2008 ◽  
Vol 254 (14) ◽  
pp. 4303-4307 ◽  
Author(s):  
D. Kaczmarek ◽  
J. Domaradzki ◽  
D. Wojcieszak ◽  
R. Wasielewski ◽  
A. Borkowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document