scholarly journals Carbon Dioxide Capture from Flue Gas Using Tri-Sodium Phosphate as an Effective Sorbent

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2889
Author(s):  
Sakpal ◽  
Kumar ◽  
Aman ◽  
Kumar

Fossil fuels are dominant as an energy source, typically producing carbon dioxide (CO2) and enhancing global climate change. The present work reports the application of low-cost tri-sodium phosphate (TSP) to capture CO2 from model flue gas (CO2 + N2) mixture, in a batch mode and fixed-bed setup. It is observed that TSP has a high CO2 capture capacity as well as high CO2 selectivity. At ambient temperature, TSP shows a maximum CO2 capture capacity of 198 mg CO2/g of TSP. Furthermore, the CO2 capture efficiency of TSP over a flue gas mixture was found to be more than 90%. Fresh and spent materials were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and Fourier transformed infrared spectroscopy (FTIR). Preliminary experiments were also conducted to evaluate the performance of regenerated TSP. The spent TSP was regenerated using sodium hydroxide (NaOH) and its recyclability was tested for three consecutive cycles. A conceptual prototype for post-combustion CO2 capture based on TSP material has also been discussed.

RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 55877-55883 ◽  
Author(s):  
F. Akhtar ◽  
N. Keshavarzi ◽  
D. Shakarova ◽  
O. Cheung ◽  
N. Hedin ◽  
...  

Monoliths of microporous aluminophosphates (AlPO4-17 and AlPO4-53) were structured by binder-free pulsed current processing.


2017 ◽  
Vol 22 (3) ◽  
pp. 215 ◽  
Author(s):  
Oscar H Ojeda-Niño ◽  
Carolina Blanco ◽  
Carlos E Daza

Hydroxyapatite (HAp) was obtained from tilapia scales by two extraction<br />methods: direct calcination and acid-base treatment. The physicochemical<br />characteristics of the obtained HAps were evaluated by thermogravimetric<br />analysis, X-ray fluorescence, X-ray diffraction, scanning electron microscopy, surface area, infrared spectroscopy, and basicity measurement at 298 K by CO2-pulse titration. Furthermore, the CO2 capture capacity of the solids at high temperature was also determined. Both methods showed the presence of a HAp phase although significant differences in the properties of the solids were found. The HAp obtained by direct calcination, exhibited a lower crystallinity and a greater surface area and basicity than the HAp obtained by the acid-base treatment. These features were correlated with the solid’s CO2 capture capacity. In this work, CO2 capture capacity values for HAp yielded by calcination ranged from 2.5 to 3.2 mg CO2 /g captured at 973 K, and for the acid-base treatment-derived HAp, CO2 capture capacity values between 1.2 to 2.5 mg CO2 /g were recorded. These results reveal the potential of HAps extracted from tilapia scales as solids with high CO2 capture capacity, thermal stability, and capture/release cycles reversibility.


2020 ◽  
Vol 380 ◽  
pp. 122515 ◽  
Author(s):  
Taiping Zhang ◽  
Min Li ◽  
Ping Ning ◽  
Qingming Jia ◽  
Qiang Wang ◽  
...  

Author(s):  
Junjie Yan ◽  
Chuanwen Zhao ◽  
Peng Wang ◽  
Ping Lu

In recent years, global warming and climate change caused by the greenhouse gas emissions has given rise to widespread concerns. CO2 has been considered as the principal greenhouse gas of interest, and fossil-fuel-fired power plants have been deemed as the largest stationary sources of CO2 emission. It is imperative to capture CO2 from these sources to reduce the global CO2 emissions. Lately, capturing CO2 from flue gas using solid absorbents shows promising for CO2 abatement. For the cost-effective CO2 capture process and the recycling of environmental pollutants, deprecated resources have been utilized for CO2 capture from flue gas. In this work, fly ashes derived from different raw materials were tried as solid CO2 sorbents for flue gas treatment. To improve their CO2 capture capacities, the ashes were modified by different polyamines. An experimental demonstration on CO2 capture behaviors of fresh ashes and modified sorbents in simulated flue gas atmosphere of 40°C, 15% CO2 + 15% H2O and balanced N2 was presented in detail with a fixed-bed reactor system. CO2 capture capacities of fresh ashes were calculated as 0.56 mmolCO2/g, 0.32 mmolCO2/g, 0.44 mmolCO2/g and 0.83 mmolCO2/g, respectively. By contrast, CO2 capture capacities of amine-modified samples had been enhanced as 0.38 mmolCO2/g, 0.65 mmolCO2/g, 1.07 mmolCO2/g, 0.85 mmolCO2/g and 1.17 mmolCO2/g. The optimal sample of TEPA-modified biomass ash (TEPA-BA) with CO2 capture capacity of 1.17mmolCO2/g was screened. The optimal candidate was then selected for further investigation of the effects of temperature, CO2 concentration and H2O concentration on its CO2 capture behaviors. The results indicated that CO2 capture capacity would increase with the increase of temperature in the range of 30 to 40 °C and decrease with the increase of temperature in the range of 40 to 60°C, increase with the increase of CO2 concentration in the range of 5% to 20%, increase with the increase of H2O concentration in the range of 0% to 15% and decrease with the increase of H2O concentration in the range of 15% to 20%. The results in this work could provide basic data as a guidance for further applying the sorbents in practical operations.


RSC Advances ◽  
2016 ◽  
Vol 6 (58) ◽  
pp. 53017-53024 ◽  
Author(s):  
Junwen Wang ◽  
Yichao Lin ◽  
Qunfeng Yue ◽  
Kai Tao ◽  
Chunlong Kong ◽  
...  

A series of N-rich porous carbons are derived from polyamine-incorporated ZIF-70. After the carbonization process, the porous carbons exhibit greatly enhanced CO2-selective adsorption capacity compared to ZIF-70 and porous carbon derived from ZIF-70.


2020 ◽  
Vol 563 ◽  
pp. 272-280 ◽  
Author(s):  
Pengju Shi ◽  
Xueqin Chen ◽  
Zhengguang Sun ◽  
Cao Li ◽  
Ziqiang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document