scholarly journals Model compound met the key structural and spectroscopic features of [FeFe]-hydrogenase active site

2019 ◽  
Author(s):  
Li Hai ◽  
Tianyong Zhang ◽  
Shuang Jiang ◽  
Xiaoyuan Ma ◽  
Di Wang ◽  
...  

Biomimetic synthesis of the [FeFe]-hydrogenase active site draws considerable attention of scientists for its amazing catalytic efficiency on reversible transition between proton and hydrogen. Fe2(CO)3[μ-(SCH(CH2CH3)CH2S)](μ-DPPM)(κ1-DPPM) (compound 1) which replicated key structural aspects of the natural [FeFe]-hydrogenase was designed and synthesized. 1 showed that the wavenumbers in IR were close to those of the natural [FeFe]-hydrogenase active site. In addition, 1 achieved the low oxidation potentials at -0.48 V and -0.26 V, respectively. In the assistance of ethyl located in the S-S bridging structure, the asymmetrical substitution with sterically encumbering and electron-rich ligands in 1 may offer a thorough protection for forming and stabilizing the open site in the rotated structure.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nur Suhanawati Ashaari ◽  
Mohd Hairul Ab. Rahim ◽  
Suriana Sabri ◽  
Kok Song Lai ◽  
Adelene Ai-Lian Song ◽  
...  

AbstractLinalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis–Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10–3 µM−1 s−1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.


2019 ◽  
Author(s):  
Christian Curado-Carballada ◽  
Ferran Feixas ◽  
Sílvia Osuna

<p><b> </b><i>Aspergillus niger </i>Monoamine Oxidase (MAO-N) is a homodimeric enzyme responsible for the oxidation of amines into the corresponding imine. Laboratory evolved variants of MAO-N in combination with a non-selective chemical reductant represents a powerful strategy for the deracemisation of chiral amine mixtures and, thus, is of interest for obtaining chiral amine building blocks. MAO-N presents a rich conformational dynamics with a flexible ß-hairpin region that can adopt closed, partially closed and open states. Despite the ß-hairpin conformational dynamics is altered along the laboratory evolutionary pathway of MAO-N, the connection between the ß-hairpin conformational dynamics and active site catalysis still remains unclear. In this work, we use accelerated molecular dynamics to elucidate the potential interplay between the ß-hairpin conformational dynamics and catalytic activity in MAO-N wild type and its evolved D5 variant. Our study reveals a delicate communication between both MAO-N subunits that impacts the active site architecture, and thus its catalytic efficiency. In both MAO-N WT and the laboratory evolved D5 variant, the ß-hairpin conformation in one of the monomers affects the productive binding of the substrate in the active site of the other subunit. However, both MAO-N WT and D5 variants show a quite different behaviour due to the distal mutations introduced experimentally with Directed Evolution. </p>


2014 ◽  
Vol 70 (a1) ◽  
pp. C437-C437
Author(s):  
Aruna Bitra ◽  
Ruchi Anand

Guanine deaminases (GDs) are important enzymes involved in both purine metabolism and nucleotide anabolism pathways. Here we present the molecular and catalytic mechanism of NE0047 and use the information obtained to engineer specific enzyme activities. NE0047 from Nitrosomonas europaea was found to be a high fidelity guanine deaminase (catalytic efficiency of 1.2 × 105 M–1 s–1). However; it exhibited secondary activity towards the structurally non-analogous triazine based compound ammeline. The X-ray structure of NE0047 in the presence of the substrate analogue 8-azaguanine help establish that the enzyme exists as a biological dimer and both the proper closure of the C-terminal loop and cross talk via the dimeric interface is crucial for conferring catalytic activity. It was further ascertained that the highly conserved active site residues Glu79 and Glu143 facilitate the deamination reaction by serving as proton shuttles. Moreover, to understand the structural basis of dual substrate specificity, X-ray structures of NE0047 in complex with a series of nucleobase analogs, nucleosides and substrate ammeline were determined. The crystal structures demonstrated that any substitutions in the parent substrates results in the rearrangement of the ligand in a catalytically unfavorable orientation and also impede the closure of catalytically important loop, thereby abrogating activity. However, ammeline was able to adopt a catalytically favorable orientation which, also allowed for proper loop closure. Based on the above knowledge of the crystal structures and the catalytic mechanism, the active site was subsequently engineered to fine-tune NE0047 activity. The mutated versions of the enzyme were designed so that they can function either exclusively as a GD or serve as specific ammeline deaminases. For example, mutations in the active site E143D and N66A confer the enzyme to be an unambiguous GD with no secondary activity towards ammeline. On the other hand, the N66Q mutant of NE0047 only deaminates ammeline. Additionally, a series of crystal structures of the mutant versions were solved that shed light on the structural basis of this differential selectivity.


2020 ◽  
Vol 168 (5) ◽  
pp. 557-567
Author(s):  
Wanitcha Rachadech ◽  
Yusuke Kato ◽  
Rabab M Abou El-Magd ◽  
Yuji Shishido ◽  
Soo Hyeon Kim ◽  
...  

Abstract Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at Position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared with wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7–0.9 µM) compared with wild-type (1.2–2.0 µM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. This study provides new insights into the structure–function relationship of human DAO.


2017 ◽  
Vol 53 (2) ◽  
pp. 424-427 ◽  
Author(s):  
Kelong Fan ◽  
Hui Wang ◽  
Juqun Xi ◽  
Qi Liu ◽  
Xiangqin Meng ◽  
...  

Histidine modification effectively improved the affinity of Fe3O4 nanozyme to H2O2, enhancing its catalytic efficiency by mimicking peroxidase active site.


2001 ◽  
Vol 276 (15) ◽  
pp. 11698-11704 ◽  
Author(s):  
Pär L. Pettersson ◽  
Bengt Mannervik

Human glutathione transferase (GST) A1-1 efficiently catalyzes the isomerization of Δ5-androstene-3,17-dione (AD) into Δ4-androstene-3,17-dione. High activity requires glutathione, but enzymatic catalysis occurs also in the absence of this cofactor. Glutathione alone shows a limited catalytic effect.S-Alkylglutathione derivatives do not promote the reaction, and the pH dependence of the isomerization indicates that the glutathione thiolate serves as a base in the catalytic mechanism. Mutation of the active-site Tyr9into Phe significantly decreases the steady-state kinetic parameters, alters their pH dependence, and increases the pKavalue of the enzyme-bound glutathione thiol. Thus, Tyr9promotes the reaction via its phenolic hydroxyl group in protonated form. GST A2-2 has a catalytic efficiency with AD 100-fold lower than the homologous GST A1-1. Another Alpha class enzyme, GST A4-4, is 1000-fold less active than GST A1-1. The Y9F mutant of GST A1-1 is more efficient than GST A2-2 and GST A4-4, both having a glutathione cofactor and an active-site Tyr9residue. The active sites of GST A2-2 and GST A1-1 differ by only four amino acid residues, suggesting that proper orientation of AD in relation to the thiolate of glutathione is crucial for high catalytic efficiency in the isomerization reaction. The GST A1-1-catalyzed steroid isomerization provides a complement to the previously described isomerase activity of 3β-hydroxysteroid dehydrogenase.


2002 ◽  
Vol 80 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Carlos F Santos ◽  
Carmem A Paula ◽  
Maria Cristina O. Salgado ◽  
Eduardo Brandt Oliveira

An elastase-2 has been recently described as the major angiotensin (Ang) II-forming enzyme of the rat mesenteric arterial bed (MAB) perfusate. Here, we have investigated the interaction of affinity-purified rat MAB elastase-2 with some substrates and inhibitors of both pancreatic elastases-2 and Ang II-forming chymases. The Ang II precursor [Pro11-D-Ala12]-Ang I was converted into Ang II by the rat MAB elastase-2 with a catalytic efficiency of 8.6 min–1·µM–1, and the chromogenic substrates N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide and N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide were hydrolyzed by the enzyme with catalytic efficiencies of 10.6 min–1·µM–1 and 7.6 min–1·µM–1, respectively. The non-cleavable peptide inhibitor CH-5450 inhibited the rat MAB elastase-2 activities toward the substrates Ang I (IC50 = 49 µM) and N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (IC50 = 4.8 µM), whereas N-acetyl-Ala-Ala-Pro-Leu-chloromethylketone, an effective active site-directed inhibitor of pancreatic elastase-2, efficiently blocked the Ang II-generating activity of the rat MAB enzyme (IC50 = 4.5 µM). Altogether, the data presented here confirm and extend the enzymological similarities between pancreatic elastase-2 and its rat MAB counterpart. Moreover, the thus far unrealized interaction of elastase-2 with [Pro11-D-Ala12]-Ang I and CH-5450, both regarded as selective for chymases, suggests that evidence for the in vivo formation of Ang II by chymases may have been overestimated in previous investigations of Ang II-forming pathways.Key words: angiotensin, elastase-2, chymase, [Pro11-D-Ala12]-Ang I, CH-5450.


Biochemistry ◽  
2016 ◽  
Vol 55 (9) ◽  
pp. 1408-1417 ◽  
Author(s):  
Peter D. Mabbitt ◽  
Galen J. Correy ◽  
Tamara Meirelles ◽  
Nicholas J. Fraser ◽  
Michelle L. Coote ◽  
...  

2014 ◽  
Vol 58 (8) ◽  
pp. 4826-4836 ◽  
Author(s):  
Hanna-Kirsti S. Leiros ◽  
Susann Skagseth ◽  
Kine Susann Waade Edvardsen ◽  
Marit Sjo Lorentzen ◽  
Gro Elin Kjæreng Bjerga ◽  
...  

ABSTRACTMetallo-β-lactamases (MBLs) are the causative mechanism for resistance to β-lactams, including carbapenems, in many Gram-negative pathogenic bacteria. One important family of MBLs is the Verona integron-encoded MBLs (VIM). In this study, the importance of residues Asp120, Phe218, and His224 in the most divergent VIM variant, VIM-7, was investigated to better understand the roles of these residues in VIM enzymes through mutations, enzyme kinetics, crystal structures, thermostability, and docking experiments. The tVIM-7-D120A mutant with a tobacco etch virus (TEV) cleavage site was enzymatically inactive, and its structure showed the presence of only the Zn1 ion. The mutant was less thermostable, with a melting temperature (Tm) of 48.5°C, compared to 55.3°C for the wild-type tVIM-7. In the F218Y mutant, a hydrogen bonding cluster was established involving residues Asn70, Asp84, and Arg121. The tVIM-7-F218Y mutant had enhanced activity compared to wild-type tVIM-7, and a slightly higherTm(57.1°C) was observed, most likely due to the hydrogen bonding cluster. Furthermore, the introduction of two additional hydrogen bonds adjacent to the active site in the tVIM-7-H224Y mutant gave a higher thermostability (Tm, 62.9°C) and increased enzymatic activity compared to those of the wild-type tVIM-7. Docking of ceftazidime in to the active site of tVIM-7, tVIM-7-H224Y, and VIM-7-F218Y revealed that the side-chain conformations of residue 224 and Arg228 in the L3 loop and Tyr67 in the L1 loop all influence possible substrate binding conformations. In conclusion, the residue composition of the L3 loop, as shown with the single H224Y mutation, is important for activity particularly toward the positively charged cephalosporins like cefepime and ceftazidime.


Sign in / Sign up

Export Citation Format

Share Document