scholarly journals Enhancement of Piezoelectric Coefficient (d33) in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

2021 ◽  
Author(s):  
Marco Fortunato ◽  
Alessio Tamburrano ◽  
Maria Paola Bracciale ◽  
Maria Laura Santarelli ◽  
Maria Sabrina Sarto

In the last years flexible, low-cost, wearable and innovative piezoelectric nanomaterials, have attracted a considerable interest to develop energy harvesters and sensors. Among the piezoelectric materials, a special focus was paid on  electroactive polymers such as Poly(vinylidene fluoride) [PVDF] and on its copolymer Poly(vinylidene fluoride-co-trifluoroethylene) [PVDF-TrFe], which is one of the most investigated piezoelectric polymers, due to the high β-phase content resulting under specific curing or processing conditions. However, to get high piezoelectric coefficient (d33), alignment of the β-phase domains is needed, which is usually obtained by applying a high electric fields at moderate temperatures. This process, usually referred as electrical poling, requires the deposition of contact electrodes over the sample surface, and the use of high voltage apparatus.   In the present work, in order to overcome these constraints we have produced, characterized and studied a polymer nanocomposite, consisting of CoFe2O4 nanoparticles dispersed in PVDF-TrFe with enhancement of the β-phase alignment through and applied a DC magnetic fields. The magnetic poling was demonstrated to be particular effective, leading to a piezoelectric coefficient, d33, with values up to 39 pm/V. The magnetic poling does not need the use a top electrode and of high magnetic fields (the maximum value of d33 was obtained at 50 mT, using a current of 0.4 A) making the PVDF-TrFE/CoFe2O4 nanocomposite suitable for the fabrication of highly efficient devices for energy harvesting and wearable sensors.

2021 ◽  
Vol 12 ◽  
pp. 1262-1270
Author(s):  
Marco Fortunato ◽  
Alessio Tamburrano ◽  
Maria Paola Bracciale ◽  
Maria Laura Santarelli ◽  
Maria Sabrina Sarto

In the last years flexible, low-cost, wearable, and innovative piezoelectric nanomaterials have attracted considerable interest regarding the development of energy harvesters and sensors. Among the piezoelectric materials, special attention has been paid to electroactive polymers such as poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFe), which is one of the most extensively investigated piezoelectric polymers, due to the high β phase content resulting from specific curing or processing conditions. However, to obtain a high piezoelectric coefficient (d33) alignment of the β phase domains is needed, which is usually reached through applying a high electric field at moderate temperatures. This process, usually referred to as electrical poling, requires the deposition of contact electrodes on the sample surface and the use of high-voltage apparatus. In the present work, in order to overcome these constraints, we have produced, characterized, and studied a polymer nanocomposite consisting of CoFe2O4 nanoparticles dispersed in PVDF-TrFe with enhancement of the β phase alignment through an applied DC magnetic field. The magnetic poling was demonstrated to be particularly effective, leading to a piezoelectric coefficient d33 with values up to 39 pm/V. This type of poling does not need the use of a top electrode or of high magnetic fields (the maximum value of d33 was obtained at 50 mT, using a current of 0.4 A) making the PVDF-TrFE/CoFe2O4 nanocomposite suitable for the fabrication of highly efficient devices for energy harvesting and wearable sensors.


2014 ◽  
Vol 04 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Mojtaba Rahimabady ◽  
Li Lu ◽  
Kui Yao

Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO 3@ TiO 2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene) (P(VDF–HFP)) polymer matrix (20 vol%). The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m). The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.


2021 ◽  
Author(s):  
Chaojie Chen ◽  
Shilong Zhao ◽  
Caofeng Pan ◽  
Yunlong Zi ◽  
Fangcheng Wang ◽  
...  

Abstract Polymer-based piezoelectric devices are promising for developing future wearable force sensors, nanogenerators, and implantable electronics etc. The electric signals generated by them are often assumed as solely coming from piezoelectric effect. However, triboelectric signals originated from contact electrification between the piezoelectric devices and the contacted objects can produce non-negligible interfacial electron transfer, which is often combined with the piezoelectric signal to give a triboelectric-piezoelectric hybrid output, leading to an exaggerated measured “piezoelectric” signal. Herein, a simple and effective method is proposed for quantitatively identifying and extracting the piezoelectric charge from the hybrid signal. The triboelectric and piezoelectric parts in the hybrid signal generated by a poly(vinylidene fluoride)-based device are clearly differentiated, and their force and charge characteristics in the time domain are identified. This work presents an effective method to elucidate the true piezoelectric performance in practical measurement, which is crucial for evaluating piezoelectric materials fairly and correctly.


2019 ◽  
Vol 3 (5) ◽  
pp. 1269-1282 ◽  
Author(s):  
Om Prakash ◽  
Karun Kumar Jana ◽  
Murli Manohar ◽  
Vinod K. Shahi ◽  
Saif A. Khan ◽  
...  

Advanced membrane was designed by creating nanochannels using swift heavy ions from an accelerator. Fuel cell was fabricated using the novel membrane and demonstrated high power density as compared to standard Nafion.


2020 ◽  
Vol 60 (3) ◽  
pp. 645-656
Author(s):  
Shuang Qin ◽  
Xu Zhang ◽  
Zheng Yu ◽  
Feng Zhao

2005 ◽  
Vol 889 ◽  
Author(s):  
Shihai Zhang ◽  
Ziqi Liang ◽  
Qing Wang ◽  
Q.M. Zhang

AbstractPoly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymers are well known for their excellent ferroelectric and other related properties and they are being exploited as active components in many microdevices such as ferroelectric memory cells and infrared sensors. Compared with conventional photolithography, ink-jet printing provides a low-cost versatile method to fabricate polymer micro-devices. In this paper, the influences of driving waveform at the jet head, ink concentration, substrate chemistry, and the solvent quality on the printed P(VDF-TrFE) dots were investigated. It was found that well-defined P(VDF-TrFE) micro-dots with diameter of less than 30 mm and thickness of ∼1 μm can be printed by using a mixed solvent system, consisting of a good solvent with relatively low boiling temperature and a poor solvent with high boiling temperature, on perfluorinated hydrophobic gold surface. The printed P(VDF-TrFE) micro-dots possess crystallinity comparable to that of the bulk sample, suggesting that ink-jet printing technology is a promising micro-fabrication technology for manufacturing P(VDF-TrFE)-based micro-sensors and other micro-devices.


Sign in / Sign up

Export Citation Format

Share Document