scholarly journals A comparative study of Repulsive Particle Swarm Optimization and Simulated Annealing on some Numerical Bench Mark Problems

Author(s):  
Sanjeev Kumar Singh ◽  
Munindra Borah
Author(s):  
Jagat Kishore Pattanaik ◽  
Mousumi Basu ◽  
Deba Prasad Dash

AbstractThis paper presents a comparative study for five artificial intelligent (AI) techniques to the dynamic economic dispatch problem: differential evolution, particle swarm optimization, evolutionary programming, genetic algorithm, and simulated annealing. Here, the optimal hourly generation schedule is determined. Dynamic economic dispatch determines the optimal scheduling of online generator outputs with predicted load demands over a certain period of time taking into consideration the ramp rate limits of the generators. The AI techniques for dynamic economic dispatch are evaluated against a ten-unit system with nonsmooth fuel cost function as a common testbed and the results are compared against each other.


2011 ◽  
Vol 274 ◽  
pp. 101-111 ◽  
Author(s):  
Norelislam Elhami ◽  
Rachid Ellaia ◽  
Mhamed Itmi

This paper presents a new methodology for the Reliability Based Particle Swarm Optimization with Simulated Annealing. The reliability analysis procedure couple traditional and modified first and second order reliability methods, in rectangular plates modelled by an Assumed Modes approach. Both reliability methods are applicable to the implicit limit state functions through numerical models, like those based on the Assumed Mode Method. For traditional reliability approaches, the algorithms FORM and SORM use a Newton-Raphson procedure for estimate design point. In modified approaches, the algorithms are based on heuristic optimization methods such as Particle Swarm Optimization and Simulated Annealing Optimization. Numerical applications in static, dynamic and stability problems are used to illustrate the applicability and effectiveness of proposed methodology. These examples consist in a rectangular plates subjected to in-plane external loads, material and geometrical parameters which are considered as random variables. The results show that the predicted reliability levels are accurate to evaluate simultaneously various implicit limit state functions with respect to static, dynamic and stability criterions.


2015 ◽  
Vol 19 (6) ◽  
pp. 2151-2160 ◽  
Author(s):  
Hong Qi ◽  
Zhen-Zong He ◽  
Shuai Gong ◽  
Li-Ming Ruan

The particle size distribution (PSD) plays an important role in environmental pollution detection and human health protection, such as fog, haze and soot. In this study, the Attractive and Repulsive Particle Swarm Optimization (ARPSO) algorithm and the basic PSO were applied to retrieve the PSD. The spectral extinction technique coupled with the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law were employed to investigate the retrieval of the PSD. Three commonly used monomodal PSDs, i.e. the Rosin-Rammer (R-R) distribution, the normal (N-N) distribution, the logarithmic normal (L-N) distribution were studied in the dependent model. Then, an optimal wavelengths selection algorithm was proposed. To study the accuracy and robustness of the inverse results, some characteristic parameters were employed. The research revealed that the ARPSO showed more accurate and faster convergence rate than the basic PSO, even with random measurement error. Moreover, the investigation also demonstrated that the inverse results of four incident laser wavelengths showed more accurate and robust than those of two wavelengths. The research also found that if increasing the interval of the selected incident laser wavelengths, inverse results would show more accurate, even in the presence of random error.


Sign in / Sign up

Export Citation Format

Share Document