scholarly journals MECHANICAL PROPERTIES OF POLISH-GROWN PINUS SYLVESTRIS L. STRUCTURAL SAWN TIMBER FROM THE BUTT, MIDDLE AND TOP LOGS

Wood Research ◽  
2021 ◽  
Vol 66 (2) ◽  
pp. 231-242
Author(s):  
Sławomir Krzosek ◽  
Marek Grześkiewicz ◽  
Izabela Burawska Kupniewska ◽  
Piotr Mańkowski ◽  
Marek Wieruszewski

The research consisted in testing Polish sawn timber dedicated for construction applications made of pines (Pinus sylvestris L.) that grew in the Silesian Forestry Region, taking into account three parts of the log: butt, middle and top. The boards had the same cross section, a nominal thickness of 40 mm and width of 138 mm, typical for Polish structural timber. The mean nominal length of the boards under research amounted to 3500 mm. Each set was composed of 70 boards. Before the tests, boards were dried in an industrial drier until reaching the moisture content of 12%, and they were planed on 4 sides. First of all, the sawn timber was graded into strength classes, and their dynamic modulus of elasticity (MOE_dyn) was tested with a non-destructive method, with the use of a portable MTG device. The next step consisted in a bending test with four points of support, according to the EN 408 standard, and with the use of the TiraTest 2300 machine, in order to determine the global modulus of elasticity (MOE_EN-408) and the static bending strength, also referred to as modulus of rupture (MOR). Finally, the average growth ring width was determined for each board (PN-D-94021), as well as wood density according to EN-408. The hereby paper presents the test results for all the tested sawn timber boards, taking into account the part of log that each board came from: butt, middle or top. The hereby paper presents the influence of density on the mechanical properties of wood, taking into account the location on the round timber. The analysis does not include the influence of the width of annual growth rings and the proportion of latewood on the wood properties under research.

2010 ◽  
Vol 113-116 ◽  
pp. 2145-2149
Author(s):  
Ying Cheng Hu ◽  
Jin Li ◽  
Fang Chao Cheng ◽  
Xu Jie Zhang

This study mainly analyzed the factors that affected the mechanical properties of laminated veneer lumber(LVL). To increase the mechanical properties, metal mesh was inserted into LVL that made of fast-growing timber. Effects of different factors were evaluated on the mechanical properties of LVL, several enhancement modes of metal mesh were designed to reinforce the LVL. Then, the mechanical properties (modulus of rupture and modulus of elasticity) of the LVL specimens were measured by static bending test. The results of different enhancement modes were analyzed and compared to investigate the effects of different factors. The position of metal mesh and the mesh number of metal mesh make significant effects on the MOE; the type of metal mesh and the angle of metal mesh-wood grain do not have any obvious effects on the MOE. The type of metal mesh and the position of metal mesh make significant effects on the MOR; the mesh number of metal mesh and the angle of metal mesh-wood grain do not have any obvious effects on the MOR.


2015 ◽  
Vol 1088 ◽  
pp. 672-675 ◽  
Author(s):  
Fernanda Christiane Rossetto Dinhane ◽  
Isabela Imakawa de Araújo ◽  
Ivaldo de Domenico Valarelli ◽  
Marcus Antonio Pereira Bueno ◽  
Bruno Santos Ferreira ◽  
...  

This research aimed to develop and evaluation the mechanical properties of a particleboard produced with bamboo particles and coconut fiber in three different experimental conditions. The panels were manufactured with castor oil based polyurethane bi-component resin in three different ratios of the adhesive components (pre-polymer and polyol). Mechanical characterization was conducted to determine modulus of elasticity (MOE) and modulus of rupture (MOR) in static bending. For the static bending test the better values were to the experimental condition 2, which relate de proportion of 1:1.5 of pre-polymer and polyol, respectively. This best solution is to reduce the amount of pre-polymer in the formulation of the adhesive, due to decreased of use of chemicals most polluting.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2020 ◽  
Vol 36 (2) ◽  
Author(s):  
Marta Cristina de Jesus Albuquerque Nogueira ◽  
Victor Almeida de Araujo ◽  
Juliano Souza Vasconcelos ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr

Forest Red Gum eucalypt provides a versatile wood and is converted into different purposes. However, such wood is somewhat limited in structural ends, which highlights the need to exploit this gap through diffusion of mechanical properties of such timber. Obtained results should assist engineers and architects in decision-making for its best building application. This paper studied two physical and fourteen mechanical properties evaluation of Eucalyptus tereticornis at two different moisture contents, following the prescriptions of Brazilian (ABNT NBR 7190: 1997) and North American (ASTM D-143-14: 2014) standard documents. Thus, 1091 repeats were carried out for all properties. By a moisture reduction from 30% to 12%, the bulk density and eleven strength properties statistically showed changes such as modulus of rupture (static bending, parallel and perpendicular compressions), modulus of elasticity (perpendicular compression and static bending), shear stress, tangential cleavage, and parallel and perpendicular hardnesses. Then, the Eucalyptus tereticornis timber could be better usable if is further applied for structural construction uses.


2021 ◽  
Vol 3 (1) ◽  
pp. 41-44
Author(s):  
Nur Wafa Amalina Amali ◽  
Nor Yuziah Mohd Yunus ◽  
Wan Mohd Nazri Wan Abdul Rahman

In this study, mechanical properties of commercially manufactured hybrid particleboard from mix-tropical wood and rubberwood with four different densities at 25mm thickness have been investigated. The particleboard sample cutting and testing was in accordance to EN312:2013. The density of particleboard is identified with interval of 10kg/m3 for different densities which include 660kg/m3, 670kg/m3, 680kg/m3 and 690kg/m3. Particleboards were made with the ratio of 40:60 for mix-tropical wood particle and rubberwood particle respectively. The particleboards were prepared with urea formaldehyde (UF) with E1 formulation with addition of wax and hardener.  Increment of 10kg/m3 density for each particleboard led to increase in internal bonding (IB), bending testing include modulus of rupture (MOR) and modulus of elasticity (MOE), surface soundness (SS) and screw edge (SE) withdrawal. It was found that with board increment of 10kg/m3, the improvement was not statically significant except that for MOR. All panels met the minimum requirements of standard.


2018 ◽  
Vol 245 ◽  
pp. 04011 ◽  
Author(s):  
Ilya Kobykhno ◽  
Dmytro Honcharenko ◽  
Vladimir Yadykin ◽  
Oleg Stolyarov ◽  
Oleg Tolochko

A series of unidirectional thermoplastic tapes (UD tapes) specimens based on carbon fibers and polyamide filled with fullerene soot in a concentration of up to 4 wt. % was made. From the obtained tapes by the method of hot pressing, composite materials (CM) specimens with 0/0 and 90/90 ply orientations were made. A study of the mechanical properties of the samples obtained by the 3-point bending test was made. Shown that the introduction of fullerene soot up to 2 wt. % can significantly increase the strength and modulus of elasticity of both longitudinal and transverse reinforcement directions. Further increase in the concentration of soot leads to a decrease in properties. A theory that describes the effect of fullerene soot on the properties of CM, including the increase and further decrease in properties, depending on the concentration of nanoparticles was proposed.


2019 ◽  
Vol 108 ◽  
pp. 13-20
Author(s):  
PIOTR BEER ◽  
IZABELA BURAWSKA-KUPNIEWSKA ◽  
PAWEŁ PACEK ◽  
SYLWIA OLEŃSKA ◽  
ANNA RÓŻAŃSKA

Influence of alder (Alnus glutinosa Gaerthn.) veneers on selected mechanical properties of layered pine (Pinus sylvestris L.) composites. The aim of the study was to analyse the influence of using hardwood veneers in the base layer on selected mechanical properties of composites made of coniferous veneers dedicated for flooring applications. The modulus of elasticity and stiffness at three-point bending were determined in static, dynamic and fatigue tests. All tested mechanical properties of pine-alder composites showed, to a different extent, higher values than composites with a base layer made only of pine veneers


2011 ◽  
Vol 239-242 ◽  
pp. 2411-2414
Author(s):  
Xing Zhen ◽  
Jiu Yin Pang ◽  
Shi Cheng Zhang ◽  
Ya Zhe Jiang

This study focuses on the effect of impregnation process on the main mechanical properties in the production of veneer composite plank. The results showed that:①Under the normal pressure and temperature the drug absorption of impregnated veneer shall extend the volume with the growth in impregnation time, but growing faster early, the later change slowly. In the impregnation process under pressure, its absorption rate and speed are greatly increased. ②The Modulus of rupture (MOR) and modulus of elasticity (MOE) of veneer composite plank are gradually increased with the drug absorption increased, but after reached a certain peak value they gradually decrease, and the variation of MOE is smaller than MOR.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 386-399 ◽  
Author(s):  
Mehran Roonia ◽  
Mohammad-Ali Hossein ◽  
Seyed-Ehsan Alavi-Tabar ◽  
Ajang Tajdini ◽  
Ahmad Jahan-Latibari ◽  
...  

In this study, variation in acoustic properties of Arizona cypress wood was monitored from pith to bark as affected by tapering of the growth ring width. Specific modulus of elasticity, acoustic coefficient, damping, and acoustic conversion efficiency were calculated. It was shown that the outer parts of the stem, close to the bark containing narrower growth rings, exhibited lower damping due to internal friction and higher sound radiation. Our finding theoretically justified the luthier craftsmen’s traditional preference toward timbers with narrow growth rings to make sounding boards in musical instruments.


Sign in / Sign up

Export Citation Format

Share Document