scholarly journals Development of the blockchain architecture of the Industrial Internet of Things system of the enterprise

2021 ◽  
Vol 16 (95) ◽  
pp. 16-32
Author(s):  
Emil A. Gumerov ◽  
◽  
Tamara V. Alekseeva ◽  

The development of the digital economy in the modern world requires solving the issue of security of Industrial Internet of Things (IIoT) applications. A large number of distributed, network-based, IIoT devices managed by intelligent programs (software agents) require protection. A successful attack on any IIoT device will lead to hacking of the IIoT application and to large financial losses, as well as to the termination of the IIoT application, therefore, the research topic is relevant. The purpose of this article is to radically solve the security problem of the IIoT application by developing a blockchain architecture of the application. The authors were tasked with investigating all aspects of the blockchain system that ensure the security of IIoT application devices. The peculiarity of the blockchain system is that its participants are software agents that control the application devices. As a result of the research, the concept of the blockchain architecture of the IIoT application is proposed. He mechanisms of consensus of intelligent programs of IIoT devices as equal active participants of the blockchain network are investigated. The consensus mechanism and the cryptographic system of the distributed registry of the blockchain network increase the information security of the IIoT application. The synergistic effect of the blockchain system and intelligent systems of software agents of IIoT application devices significantly increases the efficiency of the solution. Intelligent systems of software agents and IIoT applications are effectively trained on the blockchain platform, and as a result, we get a decentralized supercomputer in the form of a blockchain system.

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6585
Author(s):  
Claudio Urrea ◽  
David Benítez

The use of Software-Defined Networking (SDN) in the communications of the Industrial Internet of Things (IIoT) demands more comprehensive solutions than those developed to date. The lack of an SDN solution applicable in diverse IIoT scenarios is the problem addressed in this article. The main cause of this problem is the lack of integration of a set of aspects that should be considered in a comprehensive SDN solution. To contribute to the solution of this problem, a review of the literature is conducted in this article, identifying the main requirements for industrial networks nowadays as well as their solutions through SDN. This review indicates that aspects such as security, independence of the network technology used, and network centralized management can be tackled using SDN. All the advantages of this technology can be obtained through the implementation of the same solution, considering a set of aspects proposed by the authors for the implementation of SDNs in IIoT networks. Additionally, after analyzing the main features and advantages of several architectures proposed in the literature, an architecture with distributed network control is proposed for all SDN network scenarios in IIoT. This architecture can be adapted through the inclusion of other necessary elements in specific scenarios. The distributed network control feature is relevant here, as it prevents a single fault-point for an entire industrial network, in exchange for adding some complexity to the network. Finally, the first ideas for the selection of an SDN controller suitable for IIoT scenarios are included, as this is the core element in the proposed architecture. The initial proposal includes the identification of six controllers, which correspond to different types of control planes, and ten characteristics are defined for selecting the most suitable controller through the Analytic Hierarchy Process (AHP) method. The analysis and proposal of different fundamental aspects for the implementation of SDNs in IIoT in this article contribute to the development of a comprehensive solution that is not focused on the characteristics of a specific scenario and would, therefore, be applicable in limited situations.


Author(s):  
Raphael Alt ◽  
Justus Malzahn ◽  
Hubertus Murrenhoff ◽  
Katharina Schmitz

Driving aspects in the developments of the Industrial Internet of Things (IIoT) are based on markets demanding a highly flexible production on the one hand and, on the other hand, by the production industry looking for new business models. This is enabled by interconnecting intelligent devices and aggregating and analyzing huge amounts of data. In the section of field devices, targeted new developments are dealing with intelligent systems which support users in each stage of the product life cycle. During installation and commissioning of a new machine, the concept of Plug-and-Produce has been created in the production industry. It is relating to the analogy of Plug-and-Play in the field of information technology which makes it possible to recognize and use devices without additional effort across several platforms. Industrial production systems differ in some aspects from Plug-and-Play computer devices that these methods are not applicable without adjustments and more advanced considerations. Solutions to support the commissioning process are scope of this contribution and analyzed theoretically by the example of the integration of an electro-hydraulic actuator. Two results are highlighted in this contribution. Different IIoT related concepts and technologies (i.e. OPC-UA, Cyber-physical systems, semantics) are presented and merged to realize Plug-and-Produce as an holistic business process. Furthermore, the draft combines the domain of fluid power with the abstract and generalized concepts and models and gives an understanding of future requirements for fluid power field devices in the context of IIoT.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


2021 ◽  
Vol 173 ◽  
pp. 150-159
Author(s):  
Keming Mao ◽  
Gautam Srivastava ◽  
Reza M. Parizi ◽  
Mohammad S. Khan

Sign in / Sign up

Export Citation Format

Share Document