scholarly journals THE ITERATIVE MODEL OF ETHICAL ANALYSIS FOR LARGE-SCALE IMPLEMENTATION OF ICT SOLUTIONS

2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Carina Dantas
2017 ◽  
Vol 59 (1) ◽  
pp. 115-133
Author(s):  
K. MOHAMED ◽  
A. MEHDI ◽  
M. ABDELKADER

We present a new iterative model order reduction method for large-scale linear time-invariant dynamical systems, based on a combined singular value decomposition–adaptive-order rational Arnoldi (SVD-AORA) approach. This method is an extension of the SVD-rational Krylov method. It is based on two-sided projections: the SVD side depends on the observability Gramian by the resolution of the Lyapunov equation, and the Krylov side is generated by the adaptive-order rational Arnoldi based on moment matching. The use of the SVD provides stability for the reduced system, and the use of the AORA method provides numerical efficiency and a relative lower computation complexity. The reduced model obtained is asymptotically stable and minimizes the error ($H_{2}$and$H_{\infty }$) between the original and the reduced system. Two examples are given to study the performance of the proposed approach.


2005 ◽  
Vol 33 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Mark A. Rothstein

Biobanks are repositories of human biological materials collected for biomedical research. There are over 300 million stored specimens in the United States, and the number grows by 20 million per year. In the post-genome world of high throughput gene sequencing and computational biology, biobanks hold the promise of facilitating large-scale research studies. New organizational and operational models of research repositories also raise complex issues of big science, big business, and big ethical concerns.


2021 ◽  
Author(s):  
Dejian Zhang ◽  
Bingqing Lin ◽  
Jiefeng Wu ◽  
Qiaoying Lin

Abstract. High-fidelity and large-scale hydrological models are increasingly used to investigate the impacts of human activities and climate change on water availability and quality. However, the detailed representations of real-world systems and processes contained in these models inevitably lead to prohibitively high execution times, ranging from minutes to days. This becomes computationally prohibitive or even infeasible when large iterative model simulations are involved. In this study, we propose a generic two-layer model parallelization scheme to reduce the run time of computationally expensive model applications through a combination of model spatial decomposition and the graph-parallel Pregel algorithm. Taking the Soil and Water Assessment Tool (SWAT) as an example, we implemented a generic tool named GP-SWAT, enabling model-level and subbasin-level model parallelization on a Spark computer cluster. We then evaluated GP-SWAT in two sets of experiments to demonstrate the potential of GP-SWAT to accelerate single and iterative model simulations and to run in different environments. In each test set, Spark-SWAT was applied for the parallel simulation of eight synthetic hydrological models with different input/output (I/O) burdens and river network characteristics. The experimental results indicate that GP-SWAT can effectively solve high-computational-demand problems of the SWAT model. In addition, as a scalable and flexible tool, it can be run in diverse environments, from a commodity computer running the Microsoft Windows operating system to a Spark cluster consisting of a large number of computational nodes. Moreover, it is possible to apply this generic scheme to other subbasin-based hydrological models or even acyclic models in other domains to alleviate input/output (I/O) demands and optimize model computational performance.


2021 ◽  
Vol 14 (10) ◽  
pp. 5915-5925
Author(s):  
Dejian Zhang ◽  
Bingqing Lin ◽  
Jiefeng Wu ◽  
Qiaoying Lin

Abstract. High-fidelity and large-scale hydrological models are increasingly used to investigate the impacts of human activities and climate change on water availability and quality. However, the detailed representations of real-world systems and processes contained in these models inevitably lead to prohibitively high execution times, ranging from minutes to days. Such models become computationally prohibitive or even infeasible when large iterative model simulations are involved. In this study, we propose a generic two-level (i.e., watershed- and subbasin-level) model parallelization schema to reduce the run time of computationally expensive model applications through a combination of model spatial decomposition and the graph-parallel Pregel algorithm. Taking the Soil and Water Assessment Tool (SWAT) as an example, we implemented a generic tool named GP-SWAT, enabling watershed-level and subbasin-level model parallelization on a Spark computer cluster. We then evaluated GP-SWAT in two sets of experiments to demonstrate the ability of GP-SWAT to accelerate single and iterative model simulations and to run in different environments. In each test set, GP-SWAT was applied for the parallel simulation of four synthetic hydrological models with different input/output (I/O) burdens. The single-model parallelization results showed that GP-SWAT can obtain a 2.3–5.8-times speedup. For multiple simulations with subbasin-level parallelization, GP-SWAT yielded a remarkable speedup of 8.34–27.03 times. In both cases, the speedup ratios increased with an increasing computation burden. The experimental results indicate that GP-SWAT can effectively solve the high-computational-demand problems of the SWAT model. In addition, as a scalable and flexible tool, it can be run in diverse environments, from a commodity computer running the Microsoft Windows operating system to a Spark cluster consisting of a large number of computational nodes. Moreover, it is possible to apply this generic tool to other subbasin-based hydrological models or even acyclic models in other domains to alleviate I/O demands and to optimize model computational performance.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Sign in / Sign up

Export Citation Format

Share Document