scholarly journals Coir Pith as Growth Medium for Azotobacter Vinelandii and Azospirillum Brasilense

CORD ◽  
2011 ◽  
Vol 27 (2) ◽  
pp. 11
Author(s):  
Abesh Reghuvaran ◽  
Anita Das Ravindranath

Coir pith is a lignocellulosic biomass which is recalcitrant under ordinary conditions. Nitrogen fixation is commonly carried out in the soil and these soils acts as the medium for plant growth. This paper attempts to utilize coir pith as a substrate for two important nitrogen fixing organisms viz. Azotobacter vinelandii and Azospirillum brasilense. Coir pith was used as a source of carbon and energy by the bacteria and the ammonia produced during the process of nitrogen fixation was studied, the amount of ammonia produce indicates the fixation process by the bacteria. The present work succeeded in establishing the use of these two organisms to degrade the coir pith effectively and the resultant biodegraded material could be used as organic manure for plants.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz K. Medina-Cordoba ◽  
Aroon T. Chande ◽  
Lavanya Rishishwar ◽  
Leonard W. Mayer ◽  
Lina C. Valderrama-Aguirre ◽  
...  

AbstractPrevious studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.


2003 ◽  
Vol 69 (4) ◽  
pp. 1928-1935 ◽  
Author(s):  
Helmut Bürgmann ◽  
Franco Widmer ◽  
William V. Sigler ◽  
Josef Zeyer

ABSTRACT The study of free-living nitrogen-fixing organisms in bulk soil is hampered by the great diversity of soil microbial communities and the difficulty of relating nitrogen fixation activities to individual members of the diazotroph populations. We developed a molecular method that allows analysis of nifH mRNA expression in soil in parallel with determinations of nitrogen-fixing activity and bacterial growth. In this study, Azotobacter vinelandii growing in sterile soil and liquid culture served as a model system for nifH expression, in which sucrose served as the carbon source and provided nitrogen-limited conditions, while amendments of NH4NO3 were used to suppress nitrogen fixation. Soil RNA extraction was performed with a new optimized direct extraction protocol that yielded nondegraded total RNA. The RNA extracts were of high purity, free of DNA contamination, and allowed highly sensitive and specific detection of nifH mRNA by a reverse transcription-PCR. The level of nifH gene expression was estimated by PCR amplification of reverse-transcribed nifH mRNA fragments with A. vinelandii-specific nifH primers. This new approach revealed that nifH gene expression was positively correlated with bulk nitrogen fixation activity in soil (r 2 = 0.72) and in liquid culture (r 2 = 0.84) and therefore is a powerful tool for studying specific regulation of gene expression directly in the soil environment.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Brett M. Barney ◽  
Mary H. Plunkett ◽  
Velmurugan Natarajan ◽  
Florence Mus ◽  
Carolann M. Knutson ◽  
...  

ABSTRACT Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium. IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain.


2008 ◽  
Vol 6 ◽  
pp. 29-38
Author(s):  
V.V. Volkogon ◽  
O.I. Bakun ◽  
E.I. Volkogon ◽  
N.P. Shtanko ◽  
P.G. Dulnev

The influence of plant growth regulator triman-1 on nitrogen fixing bacteria and nitrogen fixation process in barley root zone was studied in the laboratory and field conditions. It was shown that triman- 1 enhances associative nitrogen fixation activity when mineral nitrogen fertilizers (N30) was used. The use of triman-1 increases efficiency of associative symbiosis more effectively with the use of carboammonium salts rather than with ammonium nitrate.


2021 ◽  
Author(s):  
Alexander B Alleman ◽  
Florence Mus ◽  
John W Peters

There is considerable interest in promoting biological nitrogen fixation as a mechanism to reduce the inputs of nitrogenous fertilizers in agriculture, a problem of agronomic, economic, and environmental importance. For the potential impact of biological nitrogen fixation in agriculture to be realized, there are considerable fundamental knowledge gaps that need to be addressed. Biological nitrogen fixation or the reduction of N2 to NH3 is catalyzed by nitrogenase which requires a large amount of energy in the form of ATP and low potential electrons. Nitrogen-fixing organisms that respire aerobically have an advantage in meeting the energy demands of biological nitrogen fixation but face challenges of protecting nitrogenase from inactivation in the presence of oxygen. Here, we have constructed a genome-scale metabolic model of the aerobic metabolism of nitrogen-fixing bacteria Azotobacter vinelandii, which uses a complex electron transport system, termed respiratory protection, to consume oxygen at a high rate keeping intracellular conditions microaerobic. Our model accurately determines growth rate under high oxygen and high substrate concentration conditions, demonstrating the large flux of energy directed to respiratory protection. While respiratory protection mechanisms compensate the energy balance in high oxygen conditions, it does not account for all substrate intake, leading to increased maintenance rates. We have also shown how A. vinelandii can adapt under different oxygen concentrations and metal availability by rearranging flux through the electron transport system. Accurately determining the energy balance in a genome-scale metabolic model is required for future engineering approaches.


2021 ◽  
Author(s):  
Carolann M. Knutson ◽  
Meghan N. Pieper ◽  
Brett M. Barney

Azotobacter vinelandii is a nitrogen-fixing free-living soil microbe that has been studied for decades in relation to biological nitrogen fixation (BNF). It is highly amenable to genetic manipulation, helping to unravel the intricate importance of different proteins involved in the process of BNF, including the biosynthesis of cofactors that are essential to assembling the complex metal cofactors that catalyze the difficult reaction of nitrogen fixation. Additionally, A. vinelandii accomplishes this feat while growing as an obligate aerobe, differentiating it from many of the nitrogen-fixing bacteria that are associated with plant roots. The ability to function in the presence of oxygen makes A. vinelandii suitable for application in various potential biotechnological schemes. In this study, we employed transposon sequencing (Tn-seq) to measure the fitness defects associated with disruptions of various genes under nitrogen-fixing dependent growth, versus growth with extraneously provided urea as a nitrogen source. The results allowed us to probe the importance of more than 3800 genes, revealing that many genes previously believed to be important, can be successfully disrupted without impacting cellular fitness. Importance These results provide insights into the functional redundancy in A. vinelandii , while also providing a direct measure of fitness for specific genes associated with the process of BNF. These results will serve as a valuable reference tool in future studies to uncover the mechanisms that govern this process.


2007 ◽  
Vol 85 (9) ◽  
pp. 787-793 ◽  
Author(s):  
John H. Markham ◽  
Corinthe Zekveld

Biomass allocation patterns in plants are known to be affected by soil nitrogen availability. Since nitrogen availability can depress symbiotic nitrogen fixation, and nitrogen fixation can make plant growth independent of soil nitrogen availability but is energetically costly, it is unclear how allocation patterns in nitrogen-fixing species should respond to variation in soil nitrogen availability. We examined the effect of nitrogen source and concentration on the growth and allocation patterns in the nitrogen-fixing shrub Alnus viridis subsp. crispa (Aiton) Turrill. Plants were grown with either NH4+-N or NO3–-N at a range of low N concentrations, from 0 to 2 mmol·L–1, and either inoculated with Frankia or not. Plants without nodules had 25.l% lower biomass and had double the allocation to roots at all but the 2 mmol·L–1 nitrogen concentration. Even though nodulated plants increased growth with nitrogen concentration, allocation to roots as a fraction of total biomass did not vary in these plants, suggesting increased growth resulted from more efficient nitrogen acquisition. Allocation to roots was a significant predictor of plant growth in non-nodulated plants (r2 = 0.318, for linear least squares fit with log mass) but not for nodulated plants (r2 = 0.108). As nitrogen concentrations increased, allocation to nodules, specific nodule numbers, and the proportion of nitrogen fixed by the plants decreased, demonstrating a shift to soil nitrogen use.


2019 ◽  
Author(s):  
Luz K. Medina-Cordoba ◽  
Aroon T. Chande ◽  
Lavanya Rishishwar ◽  
Leonard W. Mayer ◽  
Lina C. Valderrama-Aguirre ◽  
...  

ABSTRACTPrevious studies have shown that the sugarcane microbiome harbors diverse plant growth promoting (PGP) microorganisms, including nitrogen-fixing bacteria, and the objective of this study was to design a genome-enabled approach to prioritize sugarcane associated nitrogen-fixing bacteria according to their potential as biofertilizers. Using a systematic high throughput approach, 22 pure cultures of nitrogen-fixing bacteria were isolated and tested for diazotrophic potential by PCR amplification of nitrogenase (nifH) genes, common molecular markers for nitrogen fixation capacity. Genome sequencing confirmed the presence of intact nitrogenase nifH genes and operons in the genomes of 18 of the isolates. Isolate genomes also encoded operons for phosphate solubilization, siderophore production operons, and other PGP phenotypes. Klebsiella pneumoniae strains comprised 14 of the 22 nitrogen-fixing isolates, and four others were members of closely related genera to Klebsiella. A computational phenotyping approach was developed to rapidly screen for strains that have high potential for nitrogen fixation and other PGP phenotypes while showing low risk for virulence and antibiotic resistance. The majority of sugarcane isolates were below a genotypic and phenotypic threshold, showing uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six prioritized strains were experimentally evaluated for PGP phenotypes: nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid and indole acetic acid. Results from the biochemical assays were consistent with the computational phenotype predictions for these isolates. Our results indicate that computational phenotyping is a promising tool for the assessment of benefits and risks associated with bacteria commonly detected in agricultural ecosystems.IMPORTANCEA genome-enabled approach was developed for the prioritization of native bacterial isolates with the potential to serve as biofertilizers for sugarcane fields in Colombia’s Cauca Valley. The approach is based on computational phenotyping, which entails predictions related to traits of interest based on bioinformatic analysis of whole genome sequences. Bioinformatic predictions of the presence of plant growth promoting traits were validated with experimental assays and more extensive genome comparisons, thereby demonstrating the utility of computational phenotyping for assessing the benefits and risks posed by bacterial isolates that can be used as biofertilizers. The quantitative approach to computational phenotyping developed here for the discovery of biofertilizers has the potential for use with a broad range of applications in environmental and industrial microbiology, food safety, water quality, and antibiotic resistance studies.


1982 ◽  
Vol 28 (10) ◽  
pp. 1173-1180 ◽  
Author(s):  
William J. Page ◽  
S. Karen Collinson

Molybdenum (Mo)-starved wild-type and Nif− strains of Azotobacter vinelandii reduced acetylene (fixed nitrogen) in Mo-limited nitrogen-free medium. Vanadate enhanced this activity in all of the strains. Molybdate caused repression of nitrogenase activity in the Nif− mutants and enhanced the nitrogenase activity in the wild type. The nitrogenase activity in the Nif− mutant UW3, however, was enhanced by Mo, became maximal after 3 h, and then declined to zero after 10 h of incubation. The activation of nitrogenase by Mo followed a 5- to 10-min lag and was inhibited when streptomycin or rifampin was added with Mo. Examination of Mo-starved nitrogen-fixing UW3 cell extracts by two-dimensional polyacrylamide gel electrophoresis revealed molecular weight 57 000, 50 000, and 30 000 proteins that were Mo and NH4+ repressive. The molecular weight 30 000 protein appeared in the same position on the gel as the wild-type dinitrogenase reductase, although UW3 did not produce this protein under Mo-sufficient nitrogen-fixing conditions. Cell extracts prepared 3 h after Mo addition lacked the molecular weight 57 000 and 50 000 proteins but contained a new protein corresponding to the β subunit of dinitrogenase. When UW3 nitrogenase activity was lost, the dinitrogenase reductase-like protein also was absent. The results suggest that a complex active in nitrogen fixation may form between components of the traditional Mo-sufficient and alternative Mo-starved cell nitrogen fixation systems.


2020 ◽  
pp. 48-60
Author(s):  
Ihor Didur ◽  
Victoriia Shevchuk

Analysis of literary sources shows that legume-rhizobial systems annually fix nitrogen from the atmosphere in the amount of from 40 to 300 kg of per 1 ha of crop. Crops of legumes by Nitrogen fixation capabilities play an important role in saving and improvement of the natural soil fertility. It is known that in the process of the crop rotation with legumes the species composition of soil microorganisms is restored, as a result stable soil fertility rate is supported. Legumes plants are valuable siderata. Green legume fertilizer has a positive effect on increasing the productivity of plants, causes to the conservancy and increase of soil fertility. The plowing of the siderates leads to an increase in the humus content in the soil and the availability of phosphate treatment, a reduction in nitrogen gas losses from the soil. After decomposition and mineralization of leguminous siderata, the soil is replenished with nutritious macro- and microelements. Siderata is able to loosen heavy soils, improve their structure, and inhibit the growth of weeds that create water deficiency and reduce the content of minerals in the soil. Growing of peas leads to increased of the absorption efficiency of organic fertilizers by the following crops. The article approves the results of increasing the nitrogen-fixing ability of sowing pea with applying of the microbial preparation Bioinoculant and plant growth regulator Mars EL, and their role in increasing of biological nitrogen content for repair of soil fertility. It was established that the symbiotic activity of pea plants depends on the growth phase of the crop. The highest indexes of active nitrogen-fixing nodules on the roots of pea plants were found in the budding phase after pre-sowing seed complex treatment with Bioinoculant and growth regulator Mars EL. It was researched that he combined use of Bioinoculant and plant growth regulator Mars EL provided the increase of the mass of active nodules at the roots of the plant by 33% (phase of formation of 5-6 leaves), 38,8% (budding phase) and 22,8% (flowering phase) compared to the control. It was found that the use of inoculant and plant growth regulator with N30P30K30 fertilizer background leads to the greatest concentration of nodules on the main roots of the plants. The nodules had a pink color. In the technological process, the pre-sowing treatment of pea seeds with Bioinoculant and plant growth regulator Mars EL is an important perspective for improving the symbiotic activity of culture. This induces the reproduction of the soil's natural fertility. It is advisable to investigate the effect of inoculation and growth regulators with the different mechanism of action on the symbiotic activity of winter peas. Key words: soil fertility, legumes, siderata, symbiotic nitrogen fixation, inoculant, plant growth regulator


Sign in / Sign up

Export Citation Format

Share Document