Microstructure and Properties of Ti2SC-Ti2Ni Composite Structural Phase Self-Lubricating Laser Cladding Layer on TC4 Surface

2020 ◽  
Vol 40 (11) ◽  
pp. 1114001
Author(s):  
张天刚 Zhang Tiangang ◽  
张倩 Zhang Qian ◽  
庄怀风 Zhuang Huaifeng ◽  
薛鹏 Xue Peng ◽  
姚波 Yao Bo ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4373
Author(s):  
Yuqiang Feng ◽  
Zexu Du ◽  
Zhengfei Hu

This paper investigated 55 NiTi commercial alloy powder and 55 NiTi with 5% pure Ni mixed powder (55 NiTi + 5 Ni) coatings fabricated by laser cladding to study the effect of extra Ni addition on the microstructure and properties of the coating. The XRD and EDS results show that the major phases in the coatings were NiTi and Ni3Ti. Besides that, a second phase like Ni4Ti3, Fe2Ti, and NiTi2 was also detected, among which, NiTi2 was only found in 55 NiTi coating. The proportion of the phase composition in the coating was calculated via the software Image-Pro Plus. The hardness of the cladding layer reaches 770–830 HV, which was almost four times harder than the substrate, and the hardness of 55 NiTi + 5 Ni coating was around 8% higher than that of 55 NiTi coating. The wear resistance of the 55 NiTi + 5 Ni coating was also better; the wear mass loss decreased by about 13% and with a smaller friction coefficient compared with the 55 NiTi coating. These results are attributed to the solid solution strengthening effect caused by Ni addition and the second phase strengthening effect caused by the content increase of the Ni3Ti phase in the cladding layer.


2010 ◽  
Vol 154-155 ◽  
pp. 1435-1438 ◽  
Author(s):  
Gui Hua Li ◽  
Yong Zou ◽  
Zeng Da Zou ◽  
Xiao Nan Li

In this paper, the Fe-based cladding layer was prepared on 42CrMo substrate by laser cladding mixture containing chromium nitride. The effects of chromium nitride on microstructure and property of cladding layer were studied. The experimental results indicate the chromium nitride is unstable during the process of laser cladding. It is very difficult to obtain chromium nitride in the laser cladding layer. However, the addition of chromium nitride in cladding powders could promote the formation of austenite phase, and increase the microhardness of cladding layer. The reason about increasing the microhardness of cladding layer is the formation of little carbide and solution strengthening of nitrogen, not the strengthening from chromium nitride.


2020 ◽  
Vol 15 ◽  
Author(s):  
Lei Li ◽  
Yujun Cai ◽  
Guohe Li ◽  
Meng Liu

Background: As an important method of remanufacturing, laser cladding can be used to obtain the parts with specific shapes by stacking materials layer by layer. The formation mechanism of laser cladding determines the “Staircase effect”, which makes the surface quality can hardly meet the dimensional accuracy of the parts. Therefore, the subsequent machining must be performed to improve the dimensional accuracy and surface quality of cladding parts. Methods: In this paper, chip formation, cutting force, cutting temperature, tool wear, surface quality, and optimization of cutting parameters in the subsequent cutting of laser cladding layer are analyzed. Scholars have expounded and studied these five aspects but the cutting mechanism of laser cladding need further research. Results: The characteristics of cladding layer are similar to that of difficult to machine materials, and the change of parameters has a significant impact on the cutting performance. Conclusion: The research status of subsequent machining of cladding layers is summarized, mainly from the aspects of chip formation, cutting force, cutting temperature, tool wear, surface quality, and cutting parameters optimization. Besides, the existing problems and further developments of subsequent machining of cladding layers are pointed out. The efforts are helpful to promote the development and application of laser cladding remanufacturing technology.


2005 ◽  
Vol 127 (9) ◽  
pp. 978-986 ◽  
Author(s):  
J. Choi ◽  
L. Han ◽  
Y. Hua

Laser aided Directed Material Deposition (DMD) is an additive manufacturing process based on laser cladding. A full understanding of laser cladding is essential in order to achieve a steady state and robust DMD process. A two dimensional mathematical model of laser cladding with droplet injection was developed to understand the influence of fluid flow on the mixing, dilution depth, and deposition dimension, while incorporating melting, solidification, and evaporation phenomena. The fluid flow in the melt pool that is driven by thermal capillary convection and an energy balance at the liquid–vapor and the solid–liquid interface was investigated and the impact of the droplets on the melt pool shape and ripple was also studied. Dynamic motion, development of melt pool and the formation of cladding layer were simulated. The simulated results for average surface roughness were compared with the experimental data and showed a comparable trend.


Sign in / Sign up

Export Citation Format

Share Document