Heat Treatment on Microstructure and Tensile Strength of 316 Stainless Steel by Selective Laser Melting

2015 ◽  
Vol 42 (4) ◽  
pp. 0406003
Author(s):  
丁利 Ding Li ◽  
李怀学 Li Huaixue ◽  
王玉岱 Wang Yudai ◽  
黄志涛 Huang Zhitao
2018 ◽  
Vol 941 ◽  
pp. 698-703 ◽  
Author(s):  
Milad Ghayoor ◽  
Sunil B. Badwe ◽  
Harish Irrinki ◽  
Sundar V. Atre ◽  
Somayeh Pasebani

Water atomized and gas atomized 17-4 PH stainless steel powder were used as feedstock in selective laser melting process. Gas atomized powder revealed single martensitic phase after printing and heat treatment. As-printed water atomized powder contained dual martensitic and austenitic phase. The H900 heat treatment cycle was not effective in enhancing mechanical properties of the water atomized powder after laser melting. However, after solutionizing at 1315 oC and aging at 482oC fully martensitic structure was observed with yield strength of 1000 MPa and ultimate tensile strength of 1261 MPa which are comparable to those of gas atomized, 1254 MPa and 1300 MPa, respectively. Improved mechanical properties in water atomized powder was found to be related to presence of finer martensite. Our results imply that water atomized powder is a promising cheaper feedstock alternative to gas atomized powder.


Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 548 ◽  
Author(s):  
Jiapeng Luo ◽  
Xiao Jia ◽  
Ruinan Gu ◽  
Peng Zhou ◽  
Yongjiang Huang ◽  
...  

To fabricate metallic 316L/HA (hydroxyapatite) materials which meet the requirements of an implant’s mechanical properties and bioactivity for its function as human bone replacement, selective laser melting (SLM) has been employed in this study to prepare a 316L stainless steel matrix, which was subsequently covered with a hydroxyapatite (HA) coating using the sol-gel method. High density (98.9%) as-printed parts were prepared using a laser power of 230 W and a scanning speed of 800 mm/s. Austenite and residual acicular ferrite existed in the microstructure of the as-printed 316L stainless steel, and the sub-grain was uniform, whose primary dendrite spacing was around 0.35 μm. The as-printed 316L stainless steel showed the highest Vickers hardness, elastic modulus, and tensile strength at ~ (~ means about; same applies below unless stated otherwise) 247 HV, ~214.2 GPa, and ~730 MPa, respectively. The elongation corresponding to the highest tensile strength was ~38.8%. The 316L/HA structure, measured by the Relative Growth Rate (RGR) value, exhibited no cell cytotoxicity, and presented better biocompatibility than the uncoated as-printed and as-cast 316L samples.


2019 ◽  
Vol 822 ◽  
pp. 563-568
Author(s):  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor A. Polozov

The article presents the results of a study on the additive manufacturing of functional graded steel parts. Studies have been carried out on the possibility of growing blanks from two steels simultaneously – tool steel H13 and stainless steel 316L. The study of the microstructure of the transition from one steel to another showed that the transition layer is smooth and is about 200 microns thick. The mechanical properties in the transition layer are distributed over the gradient and smoothly change from one material to another. The structure and properties of the transition layer after heat treatment and hot isostatic pressing are shown.


Sign in / Sign up

Export Citation Format

Share Document