Surface Plasmon Enhanced Silicon-Based Near-Infrared Photoconductive Detector

2020 ◽  
Vol 47 (11) ◽  
pp. 1113002
Author(s):  
唐恝 Tang Jia ◽  
李家祥 Li Jiaxiang ◽  
陈沁 Chen Qin ◽  
文龙 Wen Long
Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 114
Author(s):  
Steve Kamau ◽  
Safaa Hassan ◽  
Khadijah Alnasser ◽  
Hualiang Zhang ◽  
Jingbiao Cui ◽  
...  

It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance.


Nanophotonics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 269-276 ◽  
Author(s):  
Frederik Walla ◽  
Matthias M. Wiecha ◽  
Nicolas Mecklenbeck ◽  
Sabri Beldi ◽  
Fritz Keilmann ◽  
...  

AbstractWe investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.


2014 ◽  
Vol 9 (1) ◽  
pp. 519 ◽  
Author(s):  
Peng Zhang ◽  
Shibin Li ◽  
Chunhua Liu ◽  
Xiongbang Wei ◽  
Zhiming Wu ◽  
...  

2014 ◽  
Vol 28 (17) ◽  
pp. 1450143 ◽  
Author(s):  
M. L. Wan ◽  
H. J. Du ◽  
Y. L. Song ◽  
F. Q. Zhou ◽  
K. J. Dai

The plasmonic properties of asymmetric Au / SiO 2/ Au sandwiched cross-shape nanobars are investigated theoretically using the discrete dipole approximation (DDA) method. Two localized surface plasmon resonances are observed in the extinction spectra, which perform extreme sensitivity to the length and width of the nanobar and can be tuned easily throughout visible and into near-infrared spectral regions. The local electric fields around the nanobar are calculated and a pure electromagnetic Raman enhancement factor of about 106 can be achieved. In addition, compared to a monolayer gold nanobar, it exhibits more "hot spots" and stronger localized electric field enhancements. This plasmonic substrate provides potential applications in surface enhanced Raman scattering (SERS) and nonlinear optical devices.


Sign in / Sign up

Export Citation Format

Share Document