scholarly journals Two- and Three-Dimensional Live Cell Imaging of DNA Damage Response Proteins

Author(s):  
Jason M. Beckta ◽  
Scott C. Henderson ◽  
Kristoffer Valerie
2013 ◽  
Vol 12 (2) ◽  
pp. 109-117 ◽  
Author(s):  
K. Karanam ◽  
A. Loewer ◽  
G. Lahav

2021 ◽  
Author(s):  
Alice Sandmeyer ◽  
Lili Wang ◽  
Wolfgang Hübner ◽  
Marcel Müller ◽  
Benjamin Chen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lorena Magraner-Pardo ◽  
Roman A. Laskowski ◽  
Tirso Pons ◽  
Janet M. Thornton

AbstractDNA-Damage Response (DDR) proteins are crucial for maintaining the integrity of the genome by identifying and repairing errors in DNA. Variants affecting their function can have severe consequences since failure to repair damaged DNA can result in cells turning cancerous. Here, we compare germline and somatic variants in DDR genes, specifically looking at their locations in the corresponding three-dimensional (3D) structures, Pfam domains, and protein–protein interaction interfaces. We show that somatic variants in metastatic cases are more likely to be found in Pfam domains and protein interaction interfaces than are pathogenic germline variants or variants of unknown significance (VUS). We also show that there are hotspots in the structures of ATM and BRCA2 proteins where pathogenic germline, and recurrent somatic variants from primary and metastatic tumours, cluster together in 3D. Moreover, in the ATM, BRCA1 and BRCA2 genes from prostate cancer patients, the distributions of germline benign, pathogenic, VUS, and recurrent somatic variants differ across Pfam domains. Together, these results provide a better characterisation of the most recurrent affected regions in DDRs and could help in the understanding of individual susceptibility to tumour development.


2020 ◽  
Author(s):  
Patricia A. Clow ◽  
Nathaniel Jillette ◽  
Jacqueline J. Zhu ◽  
Albert W. Cheng

AbstractThree-dimensional (3D) structures of the genome are dynamic, heterogeneous and functionally important. Live cell imaging has become the leading method for chromatin dynamics tracking. However, existing CRISPR- and TALE-based genomic labeling techniques have been hampered by laborious protocols and low signal-to-noise ratios (SNRs), and are thus mostly applicable to repetitive sequences. Here, we report a versatile CRISPR/Casilio-based imaging method, with an enhanced SNR, that allows for one nonrepetitive genomic locus to be labeled using a single sgRNA. We constructed Casilio dual-color probes to visualize the dynamic interactions of cohesin-bound elements in single live cells. By forming a binary sequence of multiple Casilio probes (PISCES) across a continuous stretch of DNA, we track the dynamic 3D folding of a 74kb genomic region over time. This method offers unprecedented resolution and scalability for delineating the dynamic 4D nucleome.One Sentence SummaryCasilio enables multiplexed live cell imaging of nonrepetitive DNA loci for illuminating the real-time dynamics of genome structures.


2009 ◽  
Vol 48 (9) ◽  
pp. 097003 ◽  
Author(s):  
Hieu M. Dang ◽  
Takehito Kawasumi ◽  
Gen Omura ◽  
Toshiyuki Umano ◽  
Shin'ichiro Kajiyama ◽  
...  

2011 ◽  
Vol 52 (6) ◽  
pp. 766-774 ◽  
Author(s):  
Yasuyoshi OKA ◽  
Motohiro YAMAUCHI ◽  
Masatoshi SUZUKI ◽  
Shunichi YAMASHITA ◽  
Keiji SUZUKI

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi30-vi30
Author(s):  
ross carruthers ◽  
Sarah Derby ◽  
Karen Strathdee ◽  
Anthony Chalmers ◽  
Jim Norman ◽  
...  

Abstract BACKGROUND: Widespread contamination of the brain with malignant cells is a predominant feature of glioblastoma (GBM) and fatal brainstem infiltration is frequently observed at autopsy. Whilst radiotherapy improves survival, irradiation increases GBM cell invasion, resulting in sublethal dose to cells migrating outside the irradiated volume. Tumour cell invasion should be a therapeutic priority if survival is to be improved. The responsible molecular mechanisms are key to improving outcomes but remain enigmatic. Ataxia telangiectasia and rad3-related (ATR) is a DNA damage response (DDR) kinase involved in DNA replication stress (RS) response and is an established therapeutic target for GBM. In this study we demonstrate a novel role for ATR kinase in facilitating malignant cell invasion. METHODS AND RESULTS: Invading margins of human GBM samples demonstrated increased pATR expression relative to core. Live cell imaging demonstrated a reduction in cell velocity following ATR inhibition (ATRi; VE822) or ATR siRNA, and a retraction defect was evident in vitro. Extensive cytoplasmic vacuolation occurred following ATRi or siRNA which were single walled structures on electron microscopy which could engulf high molecular weight dextran, suggesting blockade of macropinosome processing. Live cell imaging with GFP-integrin α5 and integrin recycling assays showed integrin sequestration within macropinosomes and reduced integrin internalisation respectively. Interrogation of a published ‘ATR interactome’ revealed ATR targets with functions in endocytic vesicle trafficking. Intravital in vivo imaging of murine xenograft tumours confirmed vacuolation and dextran uptake following ATRi, whilst a further study demonstrated reduced invading tumour cells following ATRi in intracranial xenografts. CONCLUSION: We demonstrate a novel role for ATR in facilitating macropinocytic vesicle trafficking and integrin internalisation. ATRi results in a profound motility defect in vitro and in vivo. ATR inhibitors are entering early phase trials as radiation sensitisers and we propose that therapeutic benefit will extend beyond DNA damage potentiation.


Sign in / Sign up

Export Citation Format

Share Document