scholarly journals Transplantation of Zebrafish Pediatric Brain Tumors into Immune-competent Hosts for Long-term Study of Tumor Cell Behavior and Drug Response

Author(s):  
Mattie J. Casey ◽  
Katarzyna Modzelewska ◽  
Daniela Anderson ◽  
James Goodman ◽  
Elena F. Boer ◽  
...  
Epilepsia ◽  
2015 ◽  
Vol 56 (10) ◽  
pp. 1599-1604 ◽  
Author(s):  
Nicole J. Ullrich ◽  
Scott L. Pomeroy ◽  
Kush Kapur ◽  
Peter E. Manley ◽  
Liliana C. Goumnerova ◽  
...  

2015 ◽  
Vol 16 (6) ◽  
pp. 675-680 ◽  
Author(s):  
Aria Fallah ◽  
Alexander G. Weil ◽  
Samir Sur ◽  
Ian Miller ◽  
Prasanna Jayakar ◽  
...  

OBJECT Pediatric brain tumors may be associated with medically intractable epilepsy for which surgery is indicated. The authors sought to evaluate the efficacy of epilepsy surgery for seizure control in pediatric patients with brain tumors. METHODS The authors performed a retrospective review of consecutive patients undergoing resective epilepsy surgery related to pediatric brain tumors at Miami Children’s Hospital between June 1986 and June 2014. Time-to-event analysis for seizure recurrence was performed; an “event” was defined as any seizures that occurred following resective epilepsy surgery, not including seizures and auras in the 1st postoperative week. The authors analyzed several preoperative variables to determine their suitability to predict seizure recurrence following surgery. RESULTS Eighty-four patients (47 males) with a mean age (± standard deviation) of 8.7 ± 5.5 years (range 0.5–21.6 years) were included. The study included 39 (46%) patients with gliomas, 20 (24%) with dysembryoplastic neuroepithelial tumors (DNETs), 14 (17%) with gangliogliomas, and 11 (13%) with other etiologies. Among the patients with gliomas, 18 were classified with low-grade glioma, 5 had oligodendroglioma, 6 had uncategorized astrocytoma, 3 had pilocytic astrocytoma, 3 had pleomorphic xanthoastrocytoma, 3 had glioblastoma, and 1 had gliomatosis cerebri. Seventy-nine (94.0%) resections were guided by intraoperative electrocorticography (ECoG). The mean time (± standard deviation) to seizure recurrence was 81.8 ± 6.3 months. Engel Class I outcome was achieved in 66 (78%) and 63 (75%) patients at 1 and 2 years’ follow-up, respectively. Patients with ganglioglioma demonstrated the highest probability of long-term seizure freedom, followed by patients with DNETs and gliomas. In univariate analyses, temporal location (HR 1.75, 95% CI 0.26–1.27, p = 0.171) and completeness of resection (HR 1.69, 95% CI 0.77–3.74, p = 0.191) demonstrated a trend toward a longer duration of seizure freedom. CONCLUSIONS ECoG-guided epilepsy surgery for pediatric patients with brain tumors is highly effective. Tumors located in the temporal lobe and those in which a complete ECoG-guided resection is performed may result in a greater likelihood of long-term seizure freedom.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 9531-9531
Author(s):  
Tara M. Brinkman ◽  
Wei Liu ◽  
Gregory T. Armstrong ◽  
Amar J. Gajjar ◽  
Thomas E. Merchant ◽  
...  

9531 Background: Follow-up guidelines identify supratentorial tumor location as a risk factor for poor neurocognitive outcomes during childhood; yet few studies have systematically compared long-term cognitive outcomes between adult survivors of childhood infratentorial and supratentorial brain tumors. Methods: Neurocognitive functions were evaluated in 130 adult survivors of pediatric brain tumors (58 supratentorial and 72 infratentorial, mean [SD] current age = 27.4 years [5.2], age at diagnosis = 8.6 years [4.6], and time since diagnosis = 18.8 years [4.8]) participating in the SJLIFE long-term follow-up protocol. Age-adjusted standard scores for measures of intelligence, attention, memory, processing speed, and executive functioning were calculated, with clinical impairment defined as scores <10th percentile. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using multivariable logistic regression models to examine associations between neurocognitive functions and tumor location. Results: As a group, survivors performed below average across multiple neurocognitive domains, including full scale IQ (mean=88.1; SD=18.2), with 34% demonstrating impaired IQ. Survivors of infratentorial tumors were more likely to be impaired on measures of focused attention (OR=2.19, 95% CI=1.03-4.65) and fine motor dexterity (OR=2.62, 95% CI=1.21-5.66) compared to survivors of supratentorial tumors. After adjusting for sex, age at diagnosis, shunt placement and cranial radiation (yes/no), infratentorial tumor location was only associated with reduced performance on a task of visual abstract reasoning (OR=3.76, 95% CI=1.40-10.1). Cranial radiation therapy was independently associated with impaired short-term memory (OR=15.6, 95% CI=1.64-147.8) and processing speed (OR=3.86, 95% CI=1.15-13.0). Conclusions: Tumor location was not associated with neurocognitive impairment after adjusting for treatment exposures. To further delineate potential differences associated with tumor location, future studies will examine factors including radiation dose/volume, extent of surgical resection, and medical complications.


2020 ◽  
Vol 18 (06) ◽  
pp. 307-312
Author(s):  
Fred Chiu-Lai Lam ◽  
Ekkehard M Kasper ◽  
Anand Mahadevan

AbstractRadiation therapy (RT) is a mainstay for the treatment of pediatric brain tumors. As improvements in and sophistication of this modality continue to increase the survival of patients, the long-term sequelae of RT pose significant challenges in the clinical management of this patient population as they transition into adulthood. In this special edition, we review the short- and long-term effects of RT for the treatment of pediatric brain tumors and the necessary surveillance required for follow-up.


1990 ◽  
Vol 18 (4) ◽  
pp. 304-310 ◽  
Author(s):  
Birgitta Lannering ◽  
Ildiko Marky ◽  
Anita Lundberg ◽  
Elisabeth Olsson

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6099
Author(s):  
Colin Thorbinson ◽  
John-Paul Kilday

Brain tumors are the leading cause of childhood cancer deaths in developed countries. They also represent the most common solid tumor in this age group, accounting for approximately one-quarter of all pediatric cancers. Developments in neuro-imaging, neurosurgical techniques, adjuvant therapy and supportive care have improved survival rates for certain tumors, allowing a future focus on optimizing cure, whilst minimizing long-term adverse effects. Recent times have witnessed a rapid evolution in the molecular characterization of several of the common pediatric brain tumors, allowing unique clinical and biological patient subgroups to be identified. However, a resulting paradigm shift in both translational therapy and subsequent survival for many of these tumors remains elusive, while recurrence remains a great clinical challenge. This review will provide an insight into the key molecular developments and global co-operative trial results for the most common malignant pediatric brain tumors (medulloblastoma, high-grade gliomas and ependymoma), highlighting potential future directions for management, including novel therapeutic options, and critical challenges that remain unsolved.


Sign in / Sign up

Export Citation Format

Share Document