Double In Utero Electroporation to Target Temporally and Spatially Separated Cell Populations

Author(s):  
Isabel Mateos-White ◽  
Jaime Fabra-Beser ◽  
David de Agustín-Durán ◽  
Cristina Gil-Sanz
1970 ◽  
Vol 175 (1039) ◽  
pp. 183-200 ◽  

Karyotyping and blood grouping methods were used to identify sheep twin chimaeras. Evidence that an exchange of blood cell precursors (the origin of chimaerism) had taken place in utero was obtained by examining lymphocytes in culture and finding the chromosomes of both sexes in one individual, or by finding admixture of red cell antigens, haemoglobin or ‘X ’ protein. Where chimaerism of sex chromosomes was found the pairs had identical red cell types, but two separate populations of red cells were not always identifiable. The four females in the pairs studied were freemartins. No correlation was found between the relative proportions of the two red cell populations and those of the two white cell populations. In one pair of chimaeric ewes, breeding tests showed that the major red cell populations in each case were the true genetic type. In the freemartins no correlation was found between the degree of masculinity and the numbers of male lymphocytes. A possible correlation of masculinity with red cell proportions is discussed.


2012 ◽  
Vol 45 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Yoshiaki V. Nishimura ◽  
Tomoyasu Shinoda ◽  
Yutaka Inaguma ◽  
Hidenori Ito ◽  
Koh-ichi Nagata

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xiang-Chun Ju ◽  
Qiong-Qiong Hou ◽  
Ai-Li Sheng ◽  
Kong-Yan Wu ◽  
Yang Zhou ◽  
...  

Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding.


2021 ◽  
Author(s):  
Fernando Martín Fernández ◽  
Carlos Garcia Briz ◽  
Marta Nieto

Callosal projections establish topographically organized maps between cortical areas. Neuropilin-1 (Nrp1) cortical gradient induces an early segregation of developing callosal axons. We investigated later roles of Nrp1 on the development of callosal projections from layer (L) 2/3 of the primary (S1) and secondary (S2) somatosensory (SS) areas, which express higher and lower levels of Nrp1, respectively. We used in utero electroporation to knock down or overexpress Nrp1 combined with retrograde tracers, to map connections at postnatal day 16 and 30. High levels of Nrp1 blocked contralateral S2 innervation while promoted the late postnatal growth of homotopic S1L2/3 and heterotopic S2L2/3 branches into S1. Conversely, knocking down Nrp1 increased the growth of heterotopic S1L2/3 projections into S2, and the overall refinement of S2L2/3 branches, thereby diminishing the number of P30 S2L2/3 callosally projecting neurons. Thus, the Nrp1 gradient determines homotopic SSL2/3 callosal connectivity by regulating late postnatal branching and refinement in a topographic manner.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuma Kitase ◽  
Eric M. Chin ◽  
Sindhu Ramachandra ◽  
Christopher Burkhardt ◽  
Nethra K. Madurai ◽  
...  

Abstract Background Chorioamnionitis (CHORIO) is a principal risk factor for preterm birth and is the most common pathological abnormality found in the placentae of preterm infants. CHORIO has a multitude of effects on the maternal–placental–fetal axis including profound inflammation. Cumulatively, these changes trigger injury in the developing immune and central nervous systems, thereby increasing susceptibility to chronic sequelae later in life. Despite this and reports of neural–immune changes in children with cerebral palsy, the extent and chronicity of the peripheral immune and neuroinflammatory changes secondary to CHORIO has not been fully characterized. Methods We examined the persistence and time course of peripheral immune hyper-reactivity in an established and translational model of perinatal brain injury (PBI) secondary to CHORIO. Pregnant Sprague–Dawley rats underwent laparotomy on embryonic day 18 (E18, preterm equivalent). Uterine arteries were occluded for 60 min, followed by intra-amniotic injection of lipopolysaccharide (LPS). Serum and peripheral blood mononuclear cells (PBMCs) were collected at young adult (postnatal day P60) and middle-aged equivalents (P120). Serum and PBMCs secretome chemokines and cytokines were assayed using multiplex electrochemiluminescent immunoassay. Multiparameter flow cytometry was performed to interrogate immune cell populations. Results Serum levels of interleukin-1β (IL-1β), IL-5, IL-6, C–X–C Motif Chemokine Ligand 1 (CXCL1), tumor necrosis factor-α (TNF-α), and C–C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were significantly higher in CHORIO animals compared to sham controls at P60. Notably, CHORIO PBMCs were primed. Specifically, they were hyper-reactive and secreted more inflammatory mediators both at baseline and when stimulated in vitro. While serum levels of cytokines normalized by P120, PBMCs remained primed, and hyper-reactive with a robust pro-inflammatory secretome concomitant with a persistent change in multiple T cell populations in CHORIO animals. Conclusions The data indicate that an in utero inflammatory insult leads to neural–immune changes that persist through adulthood, thereby conferring vulnerability to brain and immune system injury throughout the lifespan. This unique molecular and cellular immune signature including sustained peripheral immune hyper-reactivity (SPIHR) and immune cell priming may be a viable biomarker of altered inflammatory responses following in utero insults and advances our understanding of the neuroinflammatory cascade that leads to perinatal brain injury and later neurodevelopmental disorders, including cerebral palsy.


Sign in / Sign up

Export Citation Format

Share Document