scholarly journals The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xiang-Chun Ju ◽  
Qiong-Qiong Hou ◽  
Ai-Li Sheng ◽  
Kong-Yan Wu ◽  
Yang Zhou ◽  
...  

Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding.

2021 ◽  
Author(s):  
Hua-tai Xu ◽  
Yijun Zhu ◽  
Caiyun Deng ◽  
Yaqian Wang

Synaptic specificity is the basis of forming neural microcircuits. However, how a neuron chooses which neurons out of many potentials to form synapses remains largely unknown. Here we identified that the diversified expression of clustered protocadherin γs (cPCDHγs) plays an essential role in regulating such specificity. Our 5-prime end single-cell sequencing data revealed the diversified expression pattern of cPCDHγs in neocortical neurons. Whole-cell recording of neuron pairs in developing mouse brain slices showed that knocking out PCDHγs significantly increased the local connection rate of nearby pyramidal neurons. By contrast, neurons overexpressing the same group of clustered PCDHγ isoforms through in utero electroporation dramatically decreased their synaptic connectivity. Finally and more importantly, decreasing the similarity level of PCDHγ isoforms over-expressed in neuron pairs through sequential in utero electroporation led to a progressive elevation of synaptic connectivity. Our observations provide strong evidence to support that the existence of diversely expressed cPCDHγs allows a neuron to choose which neurons not to form a synapse, rather than choosing which neurons to make synapses.


Author(s):  
Longbo Zhang ◽  
Stephanie A. Getz ◽  
Angelique Bordey

Precise regulation of gene expression during development in cortical neurons is essential for the establishment and maintenance of neuronal connectivity and higher-order cognition. Dual in utero electroporation provides a precise and effective tool to label and manipulate gene expression in multiple neuronal populations within a circuit in a spatially and temporally regulated manner. In addition, this technique allows for morphophysiological investigations into neuronal development and connectivity following cell-specific gene manipulations. Here, we detail the dual in utero electroporation protocol.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshihide Hamabe-Horiike ◽  
Kanji Kawasaki ◽  
Masataka Sakashita ◽  
Chihiro Ishizu ◽  
Tomokazu Yoshizaki ◽  
...  

AbstractGlial cells such as astrocytes and oligodendrocytes play crucial roles in the central nervous system. To investigate the molecular mechanisms underlying the development and the biological functions of glial cells, simple and rapid techniques for glial cell-specific genetic manipulation in the mouse cerebrum would be valuable. Here we uncovered that the Gfa2 promoter is suitable for selective gene expression in astrocytes when used with the piggyBac system and in utero electroporation. In contrast, the Blbp promoter, which has been used to induce astrocyte-specific gene expression in transgenic mice, did not result in astrocyte-specific gene expression. We also identified the Plp1 and Mbp promoters could be used with the piggyBac system and in utero electroporation to induce selective gene expression in oligodendrocytes. Furthermore, using our technique, neuron-astrocyte or neuron-oligodendrocyte interactions can be visualized by labeling neurons, astrocytes and oligodendrocytes differentially. Our study provides a fundamental basis for specific transgene expression in astrocytes and/or oligodendrocytes in the mouse cerebrum.


2019 ◽  
Vol 11 (488) ◽  
pp. eaav8375 ◽  
Author(s):  
Deepthi Alapati ◽  
William J. Zacharias ◽  
Heather A. Hartman ◽  
Avery C. Rossidis ◽  
John D. Stratigis ◽  
...  

Monogenic lung diseases that are caused by mutations in surfactant genes of the pulmonary epithelium are marked by perinatal lethal respiratory failure or chronic diffuse parenchymal lung disease with few therapeutic options. Using a CRISPR fluorescent reporter system, we demonstrate that precisely timed in utero intra-amniotic delivery of CRISPR-Cas9 gene editing reagents during fetal development results in targeted and specific gene editing in fetal lungs. Pulmonary epithelial cells are predominantly targeted in this approach, with alveolar type 1, alveolar type 2, and airway secretory cells exhibiting high and persistent gene editing. We then used this in utero technique to evaluate a therapeutic approach to reduce the severity of the lethal interstitial lung disease observed in a mouse model of the human SFTPCI73T mutation. Embryonic expression of SftpcI73T alleles is characterized by severe diffuse parenchymal lung damage and rapid demise of mutant mice at birth. After in utero CRISPR-Cas9–mediated inactivation of the mutant SftpcI73T gene, fetuses and postnatal mice showed improved lung morphology and increased survival. These proof-of-concept studies demonstrate that in utero gene editing is a promising approach for treatment and rescue of monogenic lung diseases that are lethal at birth.


2013 ◽  
Vol 110 (8) ◽  
pp. 1765-1781 ◽  
Author(s):  
Wenjie Ren ◽  
Takaki Kiritoshi ◽  
Stéphanie Grégoire ◽  
Guangchen Ji ◽  
Remo Guerrini ◽  
...  

Amygdala plasticity is an important contributor to the emotional-affective dimension of pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally acting NPS, but site and mechanism of action remain to be determined. This is the first electrophysiological analysis of pain-related NPS effects in the brain. We combined whole cell patch-clamp recordings in brain slices and behavioral assays to test the hypothesis that NPS activates synaptic inhibition of amygdala output to suppress pain behavior in an arthritis pain model. Recordings of neurons in the laterocapsular division of the central nucleus (CeLC), which serves pain-related amygdala output functions, show that NPS inhibited the enhanced excitatory drive [monosynaptic excitatory postsynaptic currents (EPSCs)] from the basolateral amygdala (BLA) in the pain state. As shown by miniature EPSC analysis, the inhibitory effect of NPS did not involve direct postsynaptic action on CeLC neurons but rather a presynaptic, action potential-dependent network mechanism. Indeed, NPS increased external capsule (EC)-driven synaptic inhibition of CeLC neurons through PKA-dependent facilitatory postsynaptic action on a cluster of inhibitory intercalated (ITC) cells. NPS had no effect on BLA neurons. High-frequency stimulation (HFS) of excitatory EC inputs to ITC cells also inhibited synaptic activation of CeLC neurons, providing further evidence that ITC activation can control amygdala output. The cellular mechanisms by which EC-driven synaptic inhibition controls CeLC output remain to be determined. Administration of NPS into ITC, but not CeLC, also inhibited vocalizations and anxiety-like behavior in arthritic rats. A selective NPS receptor antagonist ([d-Cys(tBu)5]NPS) blocked electrophysiological and behavioral effects of NPS. Thus NPS is a novel tool to control amygdala output and pain-related affective behaviors through a direct action on inhibitory ITC cells.


2020 ◽  
Vol 14 ◽  
Author(s):  
Martin Clark

Afferents from the nucleus accumbens (NAc) are a major source of input into the ventral pallidum (VP). Research reveals that these afferents are GABAergic, however, stimulation of these afferents induces both excitatory and inhibitory responses within the VP. These are likely to be partially mediated by enkephalin and substance P (SP), which are also released by these afferents, and are known to modulate VP neurons. However, less is known about the potentially differential effects stimulation of these afferents has on subpopulations of neurons within the VP and the cellular mechanisms by which they exert their effects. The current study aimed to research this further using brain slices containing the VP, stimulation of the NAc afferents, and multi-electrode array (MEA) recordings of their VP targets. Stimulation of the NAc afferents induced a pause in the tonic firing in 58% of the neurons studied in the VP, while 42% were not affected. Measures used to reveal the electrophysiological difference between these groups found no significant differences in firing frequency, coefficient of variation, and spike half-width. There were however significant differences in the pause duration between neurons in the dorsal and ventral VP, with stimulation of NAc afferents producing a significantly longer pause (0.48 ± 0.06 s) in tonic firing in dorsal VP neurons, compared to neurons in the ventral VP (0.21 ± 0.09 s). Pauses in the tonic firing of VP neurons, as a result of NAc afferent stimulation, were found to be largely mediated by GABAA receptors, as the application of picrotoxin significantly reduced their duration. Opioid agonists and antagonists were found to have no significant effects on the pause in tonic activity induced by NAc afferent stimulation. However, NK-1 receptor antagonists caused significant decreases in the pause duration, suggesting that SP may contribute to the inhibitory effect of NAc afferent stimulation via activation of NK-1 receptors.


Science ◽  
2020 ◽  
Vol 369 (6503) ◽  
pp. 546-550 ◽  
Author(s):  
Michael Heide ◽  
Christiane Haffner ◽  
Ayako Murayama ◽  
Yoko Kurotaki ◽  
Haruka Shinohara ◽  
...  

The neocortex has expanded during mammalian evolution. Overexpression studies in developing mouse and ferret neocortex have implicated the human-specific gene ARHGAP11B in neocortical expansion, but the relevance for primate evolution has been unclear. Here, we provide functional evidence that ARHGAP11B causes expansion of the primate neocortex. ARHGAP11B expressed in fetal neocortex of the common marmoset under control of the gene’s own (human) promoter increased the numbers of basal radial glia progenitors in the marmoset outer subventricular zone, increased the numbers of upper-layer neurons, enlarged the neocortex, and induced its folding. Thus, the human-specific ARHGAP11B drives changes in development in the nonhuman primate marmoset that reflect the changes in evolution that characterize human neocortical development.


Sign in / Sign up

Export Citation Format

Share Document