Identification of the Source of Secreted Proteins in the Kidney by Brefeldin A Injection

Author(s):  
Kensei Taguchi ◽  
Sho Sugahara ◽  
Bertha C. Elias ◽  
Craig R. Brooks
1996 ◽  
Vol 10 (2) ◽  
pp. 135-149 ◽  
Author(s):  
A. Nanci ◽  
J. Hashimoto ◽  
S. Zalzal ◽  
C.E. Smith

Conceptually, there should be a brief interval in time when newly secreted proteins "pile up" at secretory sites just outside the membrane of ameloblasts. Indeed, previous cytochemical studies have suggested that glycosylated and/or sulfated glycoproteins accumulate at enamel growth sites. Colloidal gold lectin cytochemistry and immunocytochemistry with antibodies to enamel proteins and phosphoserine, combined with cycloheximide and brefeldin A to inhibit protein synthesis and secretion, were applied to characterize the distribution of newly formed proteins at enamel interrod and rod growth sites. Although enamel growth sites show a "rarefied" appearance, the results indicate that one or more subclasses of enamel proteins accumulate near the cell surface at sites where elongation of enamel crystallites contributes to thickening of the enamel layer. These proteins are glycosylated and/or phosphorylated and, at least in the case of the glycosylated ones, are rapidly processed after they are released extracellularly. In contrast, immunolabeling for amelogenins is generally weaker near the cell surface and more intense at a short distance away from the site where crystallites elongate. The data suggest that the enamel proteins accumulating at growth sites likely belong to the non-amelogenin category and play a transient role in promoting the lengthening of crystallites. It is concluded that areas near the ameloblast membrane where certain enamel proteins accumulate in fact constitute the equivalent of a mineralization front.


Author(s):  
Baljit Singh

The PIM of sheep, calf, goat and horse has a characteristic ultrastructural feature in the form of a unique, heparin sensitive, globular surface coat present around the plasma membrane with an intervening electron lucent space of 32-40 nm. We previously showed the active involvement of this surface coat in the phagocytosis of tracer material like monastral blue and cationized ferritin. The surface coat is capable of reconstitution in vivo following disruption with heparin. The present study was aimed to investigate whether PIM is the source of surface coat or not. In the recent years the BFA has been extensively used to understand the secretory pathways in the cells because of its ability to cause a rapid and reversible block to the anterograde transport of proteins from the endoplasmic reticulum to the Golgi.Sheep (n=6) were weighed, their plasma volume was calculated indirectly and based on which a sufficient single intravenous dose of BFA was given so as to reach a concentration of 4-5 microgram/ml of plasma.


1986 ◽  
Vol 55 (02) ◽  
pp. 268-270
Author(s):  
R J Alexander

SummaryAn attempt was made to isolate from plasma the platelet surface substrate for thrombin, glycoprotein V (GPV), because a GPV antigen was reported to be present in plasma (3). Plasma fractionation based on procedures for purification of GPV from platelets revealed a thrombin-sensitive protein with appropriate electrophoretic mobility. The protein was purified; an antiserum against it i) reacted with detergent-solubilized platelet proteins or secreted proteins in a double diffusion assay, ii) adsorbed a protein from the supernatant solution of activated platelets, and iii) inhibited thrombin-induced platelet activation, but the antiserum did not adsorb labeled GPV. The purified protein was immunochemically related to prothrombin rather than to GPV. Other antibodies against prothrombin were also able to adsorb a protein from platelets. It is concluded that 1) plasma does not contain appreciable amounts of GPV, and 2) platelets contain prothrombin or an immunochemically similar protein.


2011 ◽  
Vol 33 (7) ◽  
pp. 785-793 ◽  
Author(s):  
Xiao-Gang ZHOU ◽  
Si-Ming HOU ◽  
Duo-Wen CHEN ◽  
Nan TAO ◽  
Yu-Mei DING ◽  
...  

2021 ◽  
Vol 7 (5) ◽  
pp. 337
Author(s):  
Daniel Peterson ◽  
Tang Li ◽  
Ana M. Calvo ◽  
Yanbin Yin

Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are also identified to have higher significance and occurrence in group-specific orthogroups. Overall, our comparative genomics analysis determined positive enrichment existing between orthogroup classes and revealed a prediction of what genomic characteristics make an Ascomycete phytopathogenic. We conclude that genes shared by multiple phytopathogenic genomes are more important for phytopathogenicity than those that are unique in each genome.


Sign in / Sign up

Export Citation Format

Share Document