scholarly journals Vector-controlled Permanent Magnet Synchronous Motor Using Indirect Matrix Converter

2016 ◽  
Vol 16 (1) ◽  
pp. 1-12
Author(s):  
Zainab Abed ◽  
Turki Hassan

In this paper, the vector-controlled Permanent Magnet Synchronous Motor (PMSM) fed by Indirect Matrix Converter (IMC) is analyzed, designed, and simulated by using the IMC with Carrier Based Pulse Width Modulation (CBPWM). The CBPWM strategy is based on Space Vector Pulse Width Modulation (SVPWM) analysis, it is used to enhance the input current waveform, reduce the complexity of switching signals generation, and to solve the commutation problem. The traditional PMSM drive system is simulated for comparison with proposed drive system. The proposed drive system is compared to the traditional drive system using the Total Harmonic Distortion (THD). The comparison results show that the proposed drive system outperform the traditional drive system by THD different of 1/30 of input current and 1/1.5 of stator current, with high input power factor.

Author(s):  
Mohamed Bouazdia ◽  
Mohamed Bouhamida ◽  
Rachid Taleb ◽  
Mouloud Denai

This paper focuses on modeling and closed-loop speed control of a three-phase Permanent Magnet Synchronous Motor (PMSM) fed by a Matrix Converter (MC) based on Field-Oriented Control (FOC). The model considers a set of a small input filter with supply impedance or cable effect, to improve the quality of the input current. A simplified form of the Venturini modulation algorithm is used for switching the matrix converter and a comparative study of two types of speed controllers is presented, namely a proportional integral (PI) and a proportional integral (PI) to improve performances of the drive system in transient and stable conditions. The overall drive system is simulated using Matlab/Simulink environment. The motor performance is evaluated under different operating conditions such as sudden changes in the load or changes in the angular speed reference. The results of the converter MC gives unlimited output frequency, sinusoidal input current and output voltage waveforms and unity input displacement factor. The IP controller is shown to achieve better performance of the speed control loop, with or without the load torque as compared to the PI classic controller.


2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


2014 ◽  
Vol 1039 ◽  
pp. 353-360
Author(s):  
Yu Ning ◽  
Su Rong Huang ◽  
Jin Gao ◽  
You Min Gong

This paper presents dual inverter power supply open-end winding of surface mounted permanent magnet synchronous motor (OW-SPMSM) drive system for fans and pumps energy saving by V/f control. On the principle of OW-SPMSM drive system, this paper puts forward a unified Sine wave pulse width modulation strategy (SPWM) of dual inverter, which is easy to real time implementation for the calculation of this method is less than SVPWM, its performance is as good as the SVPWM in terms of harmonic power balance. Accordingly, a power factor closed loop control was introduced into the drive system to achieve stable volts/hertz (V/F) control. The system simulation model was investigated in detail; its results show that the proposed drive system has greatly improved the system dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document