scholarly journals Design a Compact Coplanar Wideband Antenna Used in Radio Frequency Identification Systems

2020 ◽  
Vol sceeer (3d) ◽  
pp. 134-138
Author(s):  
Sufyan Ali ◽  
Ahmed Reja ◽  
Yousif Hachim

In this paper, a new compact coplanar antenna used for Radio frequency identification (FID) applications is presented. This antenna is operated at the resonant frequency of 2.45 GHz. The proposed antenna is designed on an epoxy substrate material type (FR-4) with small size of (40 × 28) mm2 in which the dielectric thickness (ℎ) of 1.6 mm, relative permittivity (er) of 4.3 and tangent loss of 0.025. In this design the return loss is less than −10 dB in the frequency interval (2.12 − 2.84) GHz and the minimum value of return loss is -32 dB at resonant frequency. The maximum gain of the proposed antenna is 1.22 dB and the maximum directivity obtained is 2.27 dB. The patch and the ground plane of the proposed antenna are in the same surface. The proposed antenna has a wide bandwidth and omnidirectional radiation pattern with small size. The overall size of the compact antenna is (40 × 28 × 1.635) mm3. The Computer Simulation Technology (CST) microwave studio software is used for simulation and gets layout design.

Author(s):  
Sufyan Hazzaa Ali ◽  
Ahmed Hameed Reja ◽  
Yousif Azzawi Hachim

Radio-frequency identification (RFID) is an important wireless technology which utilizes radio frequencies (RFs) for exchanging data between two or more points (tags and readers), that represent an automatic identification (Auto-ID) system. This paper introduces an omnidirectional microstrip antenna operates at 2.45 GHz used for a radio-frequency identification (RFID) technology. The length of the proposed antenna is 36.5 mm and the width is 27 mm. The substrate material which has been used as a base of antenna is FR4 that has dielectric constant value of 4.3 and dielectric thickness value of 1.6 mm. Regarding the resonance frequency, return loss of the proposed antenna design is -34.8 dB. A promising directivity outcome of 2.8 dB has been achieved with omnidirectional radiation pattern as well as an acceptable efficiency of 66%. The proposed antenna design accomplishes a wideband frequency of 1.21 GHz in the frequency range of (2.14  3.35) GHz. The computer simulation technology (CST) microwave studio software has been used for implementing the proposed antenna design. The antenna design fabricatation and its characteristics have been measured using vector network analyzer (type MS4642A). The obtained results of the experimental design achieve a little bit differences as compared with the simulation results


2019 ◽  
Vol 18 (2) ◽  
pp. 55-59
Author(s):  
Nur Rabihah Dulkarim ◽  
Mohd Fairus Mohd Yusoff ◽  
Zaharah Johari

Radio Frequency Identification (RFID) is the application of electromagnetic fields to identify and track tags that attached on the objects. It transmits or reads the radio frequency waves in the system. However, due to rapid development of technology in telecommunication, a much more smaller and flexible device is needed. Therefore, in this paper, a new design of flexible RFID antenna using metamaterial structure has been proposed. At first, the basic rectangular microstrip patch antenna with resonant frequency of 900MHz is designed. Then, the CSRR metamaterial structure is introduced at the ground plane to reduce the size of the antenna while the polydimethylsiloxane (PDMS) material is being use as the antenna substrate for flexibility. All the simulation designs were done using CST software. The antenna performances such as resonant frequency, return loss, radiation pattern, gain and bandwidth are then be analyzed and presented. The results show good performances and can be applied for future application.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
M. E. de Cos ◽  
F. Las-Heras

A novel antenna/Artificial Magnetic Conductor (AMC) combination usable in dual-band Radio Frequency Identification (RFID) tags over metallic objects is presented. A compact and low thickness prototype is manufactured and characterized in terms of return loss and radiation properties in an anechoic chamber both alone and on a metallic plate. The performance exhibited by the presented antenna/AMC prototype is proper for RFID tags on both metallic and nonmetallic objects.


2011 ◽  
Vol 314-316 ◽  
pp. 1325-1329
Author(s):  
Lei Xu ◽  
Hui Ming Huang

Radio frequency identification (RFID) technology may be applied to cylindrical objects, but the curving of an RFID tag brings on an increase in resonant frequency of the tag antenna. The tag can not function in an excessively curving case, since the deviation of the antenna resonant frequency from working frequency makes a reduction in inductive energy supplied by a transmitter. The variation in antenna resonant frequency is dependant upon column radius of the cylinder and curving angle of the tag. Analytically, it is found that a reduction in central distance, which is determined by column radius and curving angle, between compound straight tracks leads to the decreasing of overall antenna-coil inductance after the curving of the tag. By introducing a curving turn exponent, the overall antenna-coil inductance is calculated. After neglecting the less variation in overall tag capacitance, the antenna resonant frequency may be estimated. The result provides an instruction for designing a curving tag antenna to fit the tag antenna resonant frequency for working frequency of an RFID system.


2015 ◽  
Vol 4 (1) ◽  
pp. 31 ◽  
Author(s):  
Y. Yu ◽  
J. Ni ◽  
Z. Xu

In this paper, a dual-band dipole antenna for passive radio frequency identification (RFID) tag application at 2.45 GHz and 5.8 GHz is designed and optimized using HFSS 13. The proposed antenna is composed of a bent microstrip patch and a coupled rectangular microstrip patch. The optimal results of this antenna are obtained by sweeping antenna parameters. Its return losses reach to -18.7732 dB and -18.2514 dB at 2.45 GHz and 5.8 GHz, respectively. The bandwidths (Return loss <=-10 dB) are 2.42~2.50 GHz and 5.77~5.82 GHz. And the relative bandwidths are 3.3% and 0.9%. It shows good impedance, gain, and radiation characteristics for both bands of interest. Besides, the input impedance of the proposed antenna may be tuned flexibly to conjugate-match to that of the IC chip.


Author(s):  
Mohamed Ihamji ◽  
Elhassane Abdelmounim ◽  
Hamid Bennis ◽  
Mostafa Hefnawi ◽  
Mohamed Latrach

In this paper, a multiband and miniature rectangular microstrip antenna is designed and analyzed for Radio Frequency Identification (RFID) reader applications. The miniaturization is achieved using fractal technique and the physical parameters of the structure as well as its ground plane are optimized using CST Microwave Studio. The total area of the final structure is 71.6 x 94 mm<sup>2</sup>. The results show that the proposed antenna has good matching input impedance with a stable radiation pattern at 915 MHz, 2.45 GHz, and 5.8 GHz.


2016 ◽  
Vol 9 (5) ◽  
pp. 1163-1167 ◽  
Author(s):  
Bo Wang ◽  
Wenqing Wang

This paper presents a miniature monopole reader antenna for tri-band radio frequency identification (RFID) portable devices. The proposed antenna operates at the main RFID frequencies and can alleviate and compensate for the shortcomings of a single-band antenna. An additional rectangular stub couples with the bent monopole antenna, allowing the latter to resonate at the RFID bands at 902–928 MHz, 2.4–2.48 GHz, and 5.725–5.875 GHz. By bending the feedline, the dimensions of the miniature antenna are reduced to 115.5 × 20 × 1.6 mm3, facilitating its integration into portable devices. The measured bandwidths(return loss < −10 dB) of the proposed antenna are 677, 580, and 250 MHz in the three operating bands, 883–1560 MHz, 2.31–2.89 GHz, and 5.65–5.9 GHz, respectively, with high-gain characteristics. An experimental study of a fabricated prototype of the optimized antenna is performed, and the results verify its good performance.


2014 ◽  
Vol 513-517 ◽  
pp. 3414-3418 ◽  
Author(s):  
Yuwono Rudy ◽  
Dwi A. Wahyu ◽  
Fauzan Edy P. Muhammad

This paper discusses concerning design of circular patch microstrip antenna for Radio Frequency Identification (RFID) tags application in microwave band. Circular microstrip antenna is designed with an egg slot on the ground plane and feed line to get ultra wideband. The design of microstrip antenna using Phenolic White Paper-FR2 with dielectric constant (or) =4.5. Based on simulation results, the antenna shows it works at frequency 2128-4807 MHz with gain of-17,398 dBi. The rectangular stub, caused the decreasing of bandwidth but the gain increase. By adding a rectangular stub on the ground plane, antenna works at frequency 1166 3475 MHz with increasing gain of-2,733 dBi.


Author(s):  
Abdelhadi Ennajih ◽  
Jamal Zbitou ◽  
Mohamed Latrach ◽  
Ahmed Errkik ◽  
Rachid Mandry

<span lang="EN-US">In this paper, we present a new dual band metamaterial printed antenna for radio frequency identification applications. The proposed antenna consists of two L-shaped slot in the radiating element for dual band operation and a complementary split ring resonator etched from the ground plane for size miniaturization. This antenna is designed and optimized by CST microwave studio on FR-4 substrate with thickness of 1.6 mm, dielectric constant of 4.4 and tangent loss of 0.025. A microstrip line with characteristic impedance of 50 ohms is used to feed this antenna. A prototype of the proposed antenna is fabricated to validate the simulation results. The measured and simulated results are in good agreement. </span>


2020 ◽  
Vol 27 (2) ◽  
pp. 40-45
Author(s):  
Sufyan Hazaa Ali ◽  
Ahmed H. R. Alfalahi ◽  
Yousif Azzawi Hachim

In this paper, a new compact waveguide-fed flexible antenna is presented for RFID applications. This antenna is operated at the resonant frequency of 2.45 GHz. The proposed antenna is designed with small size on (43 × 30) mm2 epoxy substrate material type (FR4) used in the proposed antenna that has a dielectric thickness of 1.6 mm, the relative permittivity of 4.3 and tangent loss of 0.025 where the FR4 dielectric combines good electrical features, price, and availability. The return loss is less than −10 dB in the frequency interval (2.1 − 2.98) GHz. The maximum gain of the proposed antenna is 2.47 dB. The proposed antenna has a wide impedance bandwidth, and an omnidirectional radiation pattern with a small size has been achieved. The overall size of the compact antenna are (43 × 30 × 1.67) mm3. The Computer Simulation Technology (CST) microwave studio software is used for simulation.


Sign in / Sign up

Export Citation Format

Share Document