scholarly journals Effect of Refrigeration Assisted Intercooler Turbocharging on Engine’s Horse Power

Author(s):  
Saba Arif ◽  
Adil Qadeer ◽  
Juntakan Taweekun ◽  
Zamri Noranai ◽  
Roman Kalvin

The stringent regulations on fuel saving and emissions reduction in the transportation sector have become game-raisers in the development of present internal combustion engines for road applications, even if under-the-hood space constraints, downsizing and down-weighting prevent from adopting radical changes in the engine layout. In current research, objective is to find a viable and pragmatic solution to reduce the turbo-charged engine intake air temperature by a large value as compared to traditional air-to-air intercoolers to increase Engine Horsepower. In undergoing research, a refrigerated intercooler is designed on the basis of refrigeration cycle, which further decreases the intake air temperature of the engine, resulting in increased horsepower, and improved Formula 1 lap times. Additionally, Formula 1, 2014 (V6 Turbo-Charged) Engine is used. According to the results, horse power of 1209.74HP is obtained by using refrigeration assisted intercooler. However, 1061HP is obtained for air to air intercooler. So, performance gain of 15 to 20% over present intake air cooling system in Formula 1 engine cars is successfully achieved. Additionally, Research will be utilized to decrease lap time in formula 1 racing cars.

2012 ◽  
Vol 52 (No. 2) ◽  
pp. 39-47
Author(s):  
V. Šleger ◽  
P. Neuberger

This paper first proposes a technique of computing air temperature and humidity in stables based on outdoor air parameters and biological production of animals. The computation technique is outlined. The calculated values are then used to assess the potential of evaporation cooling in mild climatic conditions. Graphs illustrate the assumed effect of evaporation cooling equipment inside a stable housing of egg laying hens. Used in the computation were hourly meteorological readings obtained during the period May to August in years 2000 to 2002, in the locality with a potential installation of a cooling system. Other Graphs illustrate the time the animals spent in an environment with a particular air temperature. For instance in June 2002, the time animals in the stable were exposed to temperatures 27°C or higher was reduced by using an air cooling system from 39 h to 22 h, and in July 2002 from 33 h to 4 h. The envisaged model can be modified for other kinds of gallinaceous poultry and pigs.


Irriga ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 140-150
Author(s):  
Antonio José Steidle Neto ◽  
SÉRGIO ZOLNIER

Este trabalho foi conduzido com o objetivo de analisar o desempenho de um sistema de resfriamento evaporativo do ar (tipo painel-exaustor) em casa-de-vegetação, ao longo do período diurno em dias com condições climáticas distintas. Foram realizadas medições de temperatura e umidade relativa do ar no interior e exterior de uma casa-de-vegetação durante o período de crescimento e desenvolvimento de tomateiros cultivados em substrato de areia. Verificou-se que as eficiências médias diárias de resfriamento evaporativo do ar variaram entre 74% e 81%. Os decréscimos máximos na temperatura do ar, imediatamente após a sua passagem pelo painel de celulose, foram de 8,2ºC e 11,4ºC. Observou-se ainda que, a eficiência de resfriamento do ar foi sensivelmente melhorada quando o déficit de pressão de vapor d'água do ar externo foi superior a 1,8 kPa.   UNITERMOS: déficit de pressão de vapor d'água do ar, temperatura do ar, eficiência de resfriamento evaporativo.     STEIDLE NETO, A. J.; ZOLNIER, S. EVAPORATIVE AIR COOLING SYSTEM PERFORMANCE IN A GREENHOUSE     2 ABSTRACT   This work aimed to analyze the performance of an evaporative air cooling system (pad-fan type) in greenhouse along daytime period in days with different climatic conditions. Air temperature and relative humidity measurements inside and outside of an greenhouse were made during the growing period of tomato plants cultivated in sand substrate. It was verified that the average daily evaporative cooling efficiency ranged from 74% to 81%. The maximum air temperature decrements, immediately after its passage through the cellulose pad, were 8.2°C and 11.4°C. It was also observed that the air cooling efficiency was sensitively improved when the vapor pressure deficit of the external air was higher than 1.8 kPa.   KEYWORDS: vapor pressure deficit, air temperature, evaporative cooling efficiency.  


Author(s):  
Vitalii Yaropud ◽  
Yelchin Aliyev

The most popular microclimate system today is based on a negative pressure ventilation system. Because it is easier to use and consumes less energy than any other forced ventilation system. The purpose of the research is to inspect the room for keeping piglets on rearing with a negative pressure ventilation system to identify shortcomings and deviations of the microclimate parameters necessary for further improvement. According to the results of the inspection of the rearing room for piglets, it was found that according to the existing system of negative pressure in the rearing room for piglets, most indicators (air velocity, ammonia, carbon dioxide, hydrogen sulfide, oxygen) are within normal limits. According to the results of the inspection of the room for keeping piglets for rearing with a negative pressure microclimate system, it was found that the air temperature in the room does not meet the recommended limits and reaches 30 °C, while the maximum recommended temperature for piglets for fattening is 20 °C. The air temperature is uneven along the length of the room, which is caused by uneven air supply from the vents. According to the results of the inspection of the room for piglets with a negative pressure microclimate system, it was found that the relative humidity at the height of the animals is higher than the recommended norms and reaches 95%, while the recommended humidity for piglets for fattening is not more than 80%. According to the results of the inspection of the room for keeping piglets for rearing with a negative pressure microclimate system, it can be stated that it is necessary to improve the air cooling system and replan the ventilation ducts of the ventilation system to ensure even air flow.


Author(s):  
Cheng Yang ◽  
Zeliang Yang ◽  
Ruixian Cai

Inlet air temperature increase results in a considerable reduction in GTCC power output. Present design of inlet air cooling system usually applied static method, which considered a constant depression of inlet air temperature, an approximate estimate of runtime, output power increase and fuel consumption variation per temperature depression, etc. However, to a crumb, at least another two problems should be studied. One is GTCC performance variation with inlet air temperature, since the kilowatt increment per centigrade is not a constant; the other is off design performance of inlet air cooling system, since the inlet air temperature depression through the cooling system varies with the actual operation conditions, such as ambient air temperature and cooling water temperature, etc. This paper presents an economic evaluation with numerical integration method on GTCC inlet air cooling with absorption chiller. For a typical GTCC composed of series E gas turbine and combined components, their non-dimensional performance curves are fitted with regression equations. Associating with these equations, the inlet air temperature characteristics of GTCC are simulated; and the fitted analytical expressions for GTCC inlet air temperature characteristics are also presented. The simulation method of off design performance of a typical absorption chiller is described. For a typical GTCC with inlet air cooling in south China area, integrated with the everyday typical weather data, GTCC everyday average output power and fuel consumption, output power increment and GTCC fuel consumption increment are simulated. The simulation results show that, for every 1°C depression in inlet air temperature, the GTCC output power increases 0.5%, while heat rate varies slightly and trends towards a rise at the inlet air temperature of about 15°C. Research on inlet air cooling scheme (Scheme 10°C, cooling the ambient air temperature from ambient temperature 30°C to 10°C) shows that, Scheme 10°C yields annual average 16°C of inlet air temperature depression. Economic evaluation based on numerical integration indicates that, in the case of Scheme 10°C, annual output power increases by 8.27%, fuel consumption rate increases by 1.03%; payback period approximately amounts to 2.0 years when power price is 12 cent/(kW.h) and fuel cost is $265/t.


Author(s):  
Fadi A. Ghaith ◽  
Fadi J. Alsouda

This paper aims to evaluate the thermal performance and feasibility of integrating the Earth-Air Heat Exchanger (EAHE) with the building’s vapor compression air cooling system. In the proposed system, the ambient air is forced by an axial fan through an EAHE buried at a certain depth below the ground surface. EAHE uses the subsoil low temperature and soil thermal properties to reduce the air temperature. The outlet air from the EAHE was used for the purpose of cooling the condenser of the vapor compression cycle (VCC) to enhance its coefficient of performance (COP). The potential enhancement on the COP was investigated for two different refrigerants (i.e. R-22 and R410a) cooling systems. A mathematical model was developed to estimate the underground soil temperature at different depths and the corresponding outlet air temperature of EAHE was calculated. The obtained results showed that the soil temperature in Dubai at 4 meters depth is about 27°C and remains relatively constant across the year. In order to estimate the effect of using EAHE on the performance of the VCC system, a sample villa project was selected as a case study. The obtained results showed that EAHE system contributed efficiently to the COP of the VCC with an overall increase of 47 % and 49 % for R-22 and R410a cycles, respectively. Moreover, the calculated values were validated against Cycle_D simulation model and showed good agreement with a maximum deviation of 5%. The payback period for this project was found to be around two years while the expected life time is about 10 years which makes it an attractive investment.


Volume 1 ◽  
2004 ◽  
Author(s):  
Mohammad Ameri ◽  
Hamid Nabati ◽  
Alireza Keshtgar

Gas turbines are almost constant volume machines at a specific rotating speed, i.e., air intake is limited to a nearly fixed volume of air regardless of ambient air conditions. As air temperature rises, its density falls. Thus, although the volumetric flow rate remains constant, the mass flow rate is reduced as air temperature rises. Power output is also reduced as air temperature rises because power output is proportional to mass flow rate. This power output reduction is from 0.5% to 0.9% of the ISO output power for every 1°C rise in the ambient temperature. The solution of this problem is very important because the peak demand season also happens in the summer. One of the useful methods to overcome this problem is to apply the fog inlet air cooling system for the gas turbines. In this paper the Rey Power Plant site climate conditions in the summer have been studied. The design conditions regarding the dry bulb temperature and relative humidity have been selected. The different inlet air cooling systems have been studied and the Fog system has been chosen. The economical study has shown that this system is very cheap in comparison with the installation of the new gas turbines. The capital cost is estimated to be 40 $/KW. The pay back period is around 1.5 year. The testing of this system has shown that the average power capacity of the power plant is increased by 19 MW and prevented the installation of a new gas turbine.


2021 ◽  
Vol 09 (03) ◽  
pp. E482-E486
Author(s):  
Stanislas Chaussade ◽  
Einas Abou Ali ◽  
Rachel Hallit ◽  
Arthur Belle ◽  
Maximilien Barret ◽  
...  

Abstract Background and study aims The role that air circulation through a gastrointestinal endoscopy system plays in airborne transmission of microorganisms has never been investigated. The aim of this study was to explore the potential risk of transmission and potential improvements in the system. Methods We investigated and described air circulation into gastrointestinal endoscopes from Fujifilm, Olympus, and Pentax. Results The light source box contains a lamp, either Xenon or LED. The temperature of the light is high and is regulated by a forced-air cooling system to maintain a stable temperature in the middle of the box. The air used by the forced-air cooling system is sucked from the closed environment of the patient through an aeration port, located close to the light source and evacuated out of the box by one or two ventilators. No filter exists to avoid dispersion of particles outside the processor box. The light source box also contains an insufflation air pump. The air is sucked from the light source box through one or two holes in the air pump and pushed from the air pump into the air pipe of the endoscope through a plastic tube. Because the air pump does not have a dedicated HEPA filter, transmission of microorganisms cannot be excluded. Conclusions Changes are necessary to prevent airborne transmission. Exclusive use of an external CO2 pump and wrapping the endoscope platform with a plastic film will limit scatter of microorganisms. In the era of pandemic virus with airborne transmission, improvements in gastrointestinal ventilation systems are necessary to avoid contamination of patients and health care workers.


2015 ◽  
Vol 76 ◽  
pp. 449-461 ◽  
Author(s):  
Mehdi A. Ehyaei ◽  
Mojtaba Tahani ◽  
Pouria Ahmadi ◽  
Mohammad Esfandiari

Sign in / Sign up

Export Citation Format

Share Document