scholarly journals Using meteorological data to determine the risk of heat stress

2012 ◽  
Vol 52 (No. 2) ◽  
pp. 39-47
Author(s):  
V. Šleger ◽  
P. Neuberger

This paper first proposes a technique of computing air temperature and humidity in stables based on outdoor air parameters and biological production of animals. The computation technique is outlined. The calculated values are then used to assess the potential of evaporation cooling in mild climatic conditions. Graphs illustrate the assumed effect of evaporation cooling equipment inside a stable housing of egg laying hens. Used in the computation were hourly meteorological readings obtained during the period May to August in years 2000 to 2002, in the locality with a potential installation of a cooling system. Other Graphs illustrate the time the animals spent in an environment with a particular air temperature. For instance in June 2002, the time animals in the stable were exposed to temperatures 27°C or higher was reduced by using an air cooling system from 39 h to 22 h, and in July 2002 from 33 h to 4 h. The envisaged model can be modified for other kinds of gallinaceous poultry and pigs.

Irriga ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 140-150
Author(s):  
Antonio José Steidle Neto ◽  
SÉRGIO ZOLNIER

Este trabalho foi conduzido com o objetivo de analisar o desempenho de um sistema de resfriamento evaporativo do ar (tipo painel-exaustor) em casa-de-vegetação, ao longo do período diurno em dias com condições climáticas distintas. Foram realizadas medições de temperatura e umidade relativa do ar no interior e exterior de uma casa-de-vegetação durante o período de crescimento e desenvolvimento de tomateiros cultivados em substrato de areia. Verificou-se que as eficiências médias diárias de resfriamento evaporativo do ar variaram entre 74% e 81%. Os decréscimos máximos na temperatura do ar, imediatamente após a sua passagem pelo painel de celulose, foram de 8,2ºC e 11,4ºC. Observou-se ainda que, a eficiência de resfriamento do ar foi sensivelmente melhorada quando o déficit de pressão de vapor d'água do ar externo foi superior a 1,8 kPa.   UNITERMOS: déficit de pressão de vapor d'água do ar, temperatura do ar, eficiência de resfriamento evaporativo.     STEIDLE NETO, A. J.; ZOLNIER, S. EVAPORATIVE AIR COOLING SYSTEM PERFORMANCE IN A GREENHOUSE     2 ABSTRACT   This work aimed to analyze the performance of an evaporative air cooling system (pad-fan type) in greenhouse along daytime period in days with different climatic conditions. Air temperature and relative humidity measurements inside and outside of an greenhouse were made during the growing period of tomato plants cultivated in sand substrate. It was verified that the average daily evaporative cooling efficiency ranged from 74% to 81%. The maximum air temperature decrements, immediately after its passage through the cellulose pad, were 8.2°C and 11.4°C. It was also observed that the air cooling efficiency was sensitively improved when the vapor pressure deficit of the external air was higher than 1.8 kPa.   KEYWORDS: vapor pressure deficit, air temperature, evaporative cooling efficiency.  


2013 ◽  
Vol 718-720 ◽  
pp. 1687-1690 ◽  
Author(s):  
Sheng Long Wang ◽  
Wen Hao Li ◽  
Yin Hai Ge

In this paper, the research object is composite-cycle air-cooling system. First,gave a brief introduction of the system structure and the working principle in power plant. Then the optimal vacuum calculation model was established with the analysis of performance indicators and the amount of equipment production, consumption power of system. Analyze the impact of the ambient temperature to system optimal vacuum in variable conditions. Lastly, combining the climatic conditions of example, which can be drawn is that when the annual best vacuum is 4.8kPa, the running annual earnings is the highest. This article provides guiding significance for correct understanding and engineering applications of composite-cycle air-cooling systems, also further confirm the feasibility of composite-cycle air-cooling system.


2018 ◽  
pp. 49-52
Author(s):  
Богдан Сергійович Портной

It is proposed the definition of the installed (rational) refrigeration capacity of a waste heat-recovery absorption-ejector chiller that utilizes the heat of the exhaust gases of a gas turbine unite to cool the air at the inlet. Since the effect of air cooling, in particular in the form of a reduction in the specific fuel consumption, depends on its depth (the magnitude of the decrease in air temperature) and duration, it is proposed to determine it by the annual fuel economy. As an example of air cooling at the inlet of a gas turbine unit, the value of reducing specific fuel consumption due to cooling the air at the inlet to the temperature of 15 °C by an absorption lithium-bromide chiller and two-stage air cooling: to a temperature of 15 °C in an absorption lithium-bromide chiller and down to 10 °C – in a refrigerant ejector chiller as the stages of a two-stage absorption-ejector chiller, depending on the installed (design) refrigeration capacity is analyzed.It is shown that proceeding from the different rate of increment of the annual reduction in the specific fuel consumption due to the change in the thermal load in accordance with the current climatic conditions, it is necessary to choose such design heat load for the air cooling system (installed refrigeration capacity of the chillers), which ensures the achievement of the maximum or close to annual reduction in the specific fuel consumption at relatively high rates of its increment. In order to determine the installed refrigeration capacity, which ensures the maximum annual refrigeration capacity (annual production of cold), the dependence of the increment of annual fuel economy from the installed refrigeration capacity is analyzed. Based on the results of the investigation, it was proposed to determine the rational thermal load of the air cooling system (installed - the design refrigeration capacity of the chiller) in accordance with the changing climatic conditions of operation during the year, which provides a maximum annual reduction in the specific fuel consumption at relatively high rates of its increment


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6201
Author(s):  
Andrii Radchenko ◽  
Eugeniy Trushliakov ◽  
Krzysztof Kosowski ◽  
Dariusz Mikielewicz ◽  
Mykola Radchenko

The efficiency of cooling ambient air at the inlet of gas turbines in temperate climatic conditions was analyzed and reserves for its enhancing through deep cooling were revealed. A method of logical analysis of the actual operation efficiency of turbine intake air cooling systems in real varying environment, supplemented by the simplest numerical simulation was used to synthesize new solutions. As a result, a novel trend in engine intake air cooling to 7 or 10 °C in temperate climatic conditions by two-stage cooling in chillers of combined type, providing an annual fuel saving of practically 50%, surpasses its value gained due to traditional air cooling to about 15 °C in absorption lithium-bromide chiller of a simple cycle, and is proposed. On analyzing the actual efficiency of turbine intake air cooling system, the current changes in thermal loads on the system in response to varying ambient air parameters were taken into account and annual fuel reduction was considered to be a primary criterion, as an example. The improved methodology of the engine intake air cooling system designing based on the annual effect due to cooling was developed. It involves determining the optimal value of cooling capacity, providing the minimum system sizes at maximum rate of annual effect increment, and its rational value, providing a close to maximum annual effect without system oversizing at the second maximum rate of annual effect increment within the range beyond the first maximum rate. The rational value of design cooling capacity provides practically the maximum annual fuel saving but with the sizes of cooling systems reduced by 15 to 20% due to the correspondingly reduced design cooling capacity of the systems as compared with their values defined by traditional designing focused to cover current peaked short-term thermal loads. The optimal value of cooling capacity providing the minimum sizes of cooling system is very reasonable for applying the energy saving technologies, for instance, based on the thermal storage with accumulating excessive (not consumed) cooling capacities at lowered current thermal loads to cover the peak loads. The application of developed methodology enables revealing the thermal potential for enhancing the efficiency of any combustion engine (gas turbines and engines, internal combustion engines, etc.).


2020 ◽  
pp. 18-23
Author(s):  
Роман Миколайович Радченко ◽  
Дмитро Вікторович Коновалов ◽  
Максим Андрійович Пирисунько ◽  
Чжан Цян ◽  
Луо Зевей

The efficiency of air cooling at the inlet of the main low speed engine of a transport vessel during operation in tropical climatic conditions on the Shanghai-Karachi-Shanghai route was analyzed. The peculiarity of the tropical climate is the high relative humidity of the air at the same time its high temperatures, and hence the increased thermal load on the cooling system, which requires efficient transformation of the waste heat into the cold in the case of the use of waste heat recovery refrigeration machines. The cooling of the air at the inlet of the low speed engine by absorption lithium bromide chillers, which are characterized by high efficiency of transformation of waste heat into cold – by high coefficients of performance, is investigated. A schematic-construction solution of the air cooling system at the inlet of the ship's main engine using the heat of exhaust gases by an absorption chiller is proposed and analyzed. With this the cooling potential of the inlet air cooling from the current ambient air temperature to 15 ° C and the corresponding heat consumption for the operation of the adsorption chiller, on the one hand, was compared with the available exhaust gas heat potential, on the other hand. The effect of using the exhaust gas heat to cool the air at the inlet of the engine has been analyzed taking into account the changing climatic conditions during the voyage. Enhancement of fuel efficiency of the ship's engine by reducing the inlet air temperature were evaluated by current values of the reduction in specific and total fuel consumption. It is shown that due to the high efficiency of heat conversion in absorption chillers (high coefficients of performance 0.7…0.8), a significant amount of excessive exhaust gas heat over the heat required to cool the ambient air at the inlet of the engine to 15 ° C, which reaches almost half of the available exhaust gas heat during the Shanghai-Karachi-Shanghai route. This reveals the possibility of additional cooling a scavenge air too with almost double fuel economy due to the cooling of all cycle air of the low speed engine, including the air at the inlet.


Author(s):  
Vitalii Yaropud ◽  
Yelchin Aliyev

The most popular microclimate system today is based on a negative pressure ventilation system. Because it is easier to use and consumes less energy than any other forced ventilation system. The purpose of the research is to inspect the room for keeping piglets on rearing with a negative pressure ventilation system to identify shortcomings and deviations of the microclimate parameters necessary for further improvement. According to the results of the inspection of the rearing room for piglets, it was found that according to the existing system of negative pressure in the rearing room for piglets, most indicators (air velocity, ammonia, carbon dioxide, hydrogen sulfide, oxygen) are within normal limits. According to the results of the inspection of the room for keeping piglets for rearing with a negative pressure microclimate system, it was found that the air temperature in the room does not meet the recommended limits and reaches 30 °C, while the maximum recommended temperature for piglets for fattening is 20 °C. The air temperature is uneven along the length of the room, which is caused by uneven air supply from the vents. According to the results of the inspection of the room for piglets with a negative pressure microclimate system, it was found that the relative humidity at the height of the animals is higher than the recommended norms and reaches 95%, while the recommended humidity for piglets for fattening is not more than 80%. According to the results of the inspection of the room for keeping piglets for rearing with a negative pressure microclimate system, it can be stated that it is necessary to improve the air cooling system and replan the ventilation ducts of the ventilation system to ensure even air flow.


Author(s):  
Cheng Yang ◽  
Zeliang Yang ◽  
Ruixian Cai

Inlet air temperature increase results in a considerable reduction in GTCC power output. Present design of inlet air cooling system usually applied static method, which considered a constant depression of inlet air temperature, an approximate estimate of runtime, output power increase and fuel consumption variation per temperature depression, etc. However, to a crumb, at least another two problems should be studied. One is GTCC performance variation with inlet air temperature, since the kilowatt increment per centigrade is not a constant; the other is off design performance of inlet air cooling system, since the inlet air temperature depression through the cooling system varies with the actual operation conditions, such as ambient air temperature and cooling water temperature, etc. This paper presents an economic evaluation with numerical integration method on GTCC inlet air cooling with absorption chiller. For a typical GTCC composed of series E gas turbine and combined components, their non-dimensional performance curves are fitted with regression equations. Associating with these equations, the inlet air temperature characteristics of GTCC are simulated; and the fitted analytical expressions for GTCC inlet air temperature characteristics are also presented. The simulation method of off design performance of a typical absorption chiller is described. For a typical GTCC with inlet air cooling in south China area, integrated with the everyday typical weather data, GTCC everyday average output power and fuel consumption, output power increment and GTCC fuel consumption increment are simulated. The simulation results show that, for every 1°C depression in inlet air temperature, the GTCC output power increases 0.5%, while heat rate varies slightly and trends towards a rise at the inlet air temperature of about 15°C. Research on inlet air cooling scheme (Scheme 10°C, cooling the ambient air temperature from ambient temperature 30°C to 10°C) shows that, Scheme 10°C yields annual average 16°C of inlet air temperature depression. Economic evaluation based on numerical integration indicates that, in the case of Scheme 10°C, annual output power increases by 8.27%, fuel consumption rate increases by 1.03%; payback period approximately amounts to 2.0 years when power price is 12 cent/(kW.h) and fuel cost is $265/t.


Author(s):  
Fadi A. Ghaith ◽  
Fadi J. Alsouda

This paper aims to evaluate the thermal performance and feasibility of integrating the Earth-Air Heat Exchanger (EAHE) with the building’s vapor compression air cooling system. In the proposed system, the ambient air is forced by an axial fan through an EAHE buried at a certain depth below the ground surface. EAHE uses the subsoil low temperature and soil thermal properties to reduce the air temperature. The outlet air from the EAHE was used for the purpose of cooling the condenser of the vapor compression cycle (VCC) to enhance its coefficient of performance (COP). The potential enhancement on the COP was investigated for two different refrigerants (i.e. R-22 and R410a) cooling systems. A mathematical model was developed to estimate the underground soil temperature at different depths and the corresponding outlet air temperature of EAHE was calculated. The obtained results showed that the soil temperature in Dubai at 4 meters depth is about 27°C and remains relatively constant across the year. In order to estimate the effect of using EAHE on the performance of the VCC system, a sample villa project was selected as a case study. The obtained results showed that EAHE system contributed efficiently to the COP of the VCC with an overall increase of 47 % and 49 % for R-22 and R410a cycles, respectively. Moreover, the calculated values were validated against Cycle_D simulation model and showed good agreement with a maximum deviation of 5%. The payback period for this project was found to be around two years while the expected life time is about 10 years which makes it an attractive investment.


Author(s):  
E. Kakaras ◽  
A. Doukelis ◽  
J. Scharfe

The operation of gas turbines at ambient air temperatures higher than the ISO standard conditions (15°C) causes performance penalties both in the generated power and the efficiency of the engine. At high inlet-air temperatures, there can be a power loss of more than 20% combined with a significant increase in specific fuel consumption, compared to the ISO standard conditions. Thus, over a long period of time, gas turbines have a lower power output and efficiency than the equipment could actually perform. It is the purpose of this work to present the possibilities and advantages from the integration of an innovative air-cooling system for reducing the gas turbine intake-air temperature. The advantages of this system are demonstrated by examining alternative scenarios of usage, representative of different countries and different climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document