scholarly journals Three-Dimensional Radiative Flow of Hybrid Nanofluid Past a Shrinking Plate with Suction

Author(s):  
Nur Syahirah Wahid ◽  
Norihan Md Arifin ◽  
Najiyah Safwa Khashi’ie ◽  
Rusya Iryanti Yahaya ◽  
Ioan Pop ◽  
...  

Hybrid nanofluid has been widely used in various heat transfer applications especially as the heat exchanger due to the great thermal conductivity compared to the conventional fluid. However, numerous investigations should still be carried out to properly understand its properties. Hence, in this study, a three-dimensional radiative flow of hybrid Cu-Al2O3/water nanofluid past a permeable shrinking plate is numerically analyzed. The boundary layer including the energy equations are reduced to a system of ordinary differential equations using the similarity transformations and are then solved numerically by using the bvp4c solver in MATLAB. The application of suction through the permeable plate is necessary in aiding the fluid motion past the shrinking surface. Dual solutions are also observable, hence the stability analysis is conducted to mathematically validate the real solution. The enhancement of copper volumetric concentration in the hybrid nanofluid is capable in decelerating the boundary layer separation.

Author(s):  
Ch. Hirsch ◽  
S. Kang ◽  
G. Pointel

The three-dimensional flow in centrifugal impellers is investigated on the basis of a detailed analysis of the results of numerical simulations. In order to gain confidence in this process, an in-depth validation is performed, based on computations of Krain’s centrifugal compressor and of a radial pump impeller, both with vaneless diffusers. Detailed comparisons with available experimental data provide high confidence in the numerical tools and results. The appearance of a high loss ‘wake’ region results from the transport of boundary layer material from the blade surfaces to the shroud region and its location depends on the balance between secondary and tip leakage flows and is not necessarily connected to 3D boundary layer separation. Although the low momentum spots near the shroud can interfere with 3D separated regions, the main outcome of the present analysis is that these are two distinct phenomena. Part I of this paper focuses on the validation base of the numerical approach, based on fine mesh simulations, while Part II presents an analysis of the different contributions to the secondary flows and attempts to estimate their effect on the overall flow pattern.


2017 ◽  
Vol 829 ◽  
pp. 328-344 ◽  
Author(s):  
V. D. Borisevich ◽  
E. P. Potanin ◽  
J. Whichello

A model of a laminar viscous conducting flow, near a dielectric disc in a uniform magnetic field and in the presence of external rotation, is considered, where there is a uniform suction and an axial temperature gradient between the flow and the disc’s surface. It is assumed that the parameters of the suction or the magnetohydrodynamic (MHD) interaction are such that the nonlinear inertial terms, related to the circulation flow, are negligible in the differential equations of the MHD boundary layer on a rotating disc. Analysis of the motion and energy equations, taking the dependence of density on temperature into account, is carried out using the Dorodnitsyn transformation. The exact analytical solution for the boundary layer and heat transfer equations is obtained and analysed, neglecting the viscous and Joule dissipation. The dependence of the flow characteristics in the boundary layer on the rate of suction and the magnetic field induction is studied. It is shown that the direction of the radial flow in the boundary layer on a disc can be changed, not only by variation of the ratio between the angular velocities in the external flow and the boundary layer, but also by changing the ratio of the temperatures in these two flows, as well as by varying the hydrodynamic Prandtl number. The approximate calculation of a three-dimensional flow in a rotating cylinder with a braking disc (or lid) is carried out, demonstrating that a magnetic field slows the circulation velocity in a rotating cylinder.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


Author(s):  
Yap Bing Kho ◽  
Rahimah Jusoh ◽  
Mohd Zuki Salleh ◽  
Muhammad Khairul Anuar Mohamed ◽  
Zulkhibri Ismail ◽  
...  

The effects of viscous dissipation on the boundary layer flow of hybrid nanofluids have been investigated. This study presents the mathematical modelling of steady two dimensional boundary layer flow of Cu-TiO2 hybrid nanofluid. In this research, the surface of the model is stretched and shrunk at the specific values of stretching/shrinking parameter. The governing partial differential equations of the hybrid nanofluid are reduced to the ordinary differential equations with the employment of the appropriate similarity transformations. Then, Matlab software is used to generate the numerical and graphical results by implementing the bvp4c function. Subsequently, dual solutions are acquired through the exact guessing values. It is observed that the second solution adhere to less stableness than first solution after performing the stability analysis test. The existence of viscous dissipation in this model is dramatically brought down the rate of heat transfer. Besides, the effects of the suction and nanoparticles concentration also have been highlighted. An increment in the suction parameter enhances the magnitude of the reduced skin friction coefficient while the augmentation of concentration of copper and titanium oxide nanoparticles show different modes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Natalia C. Rosca ◽  
Alin V. Rosca ◽  
Ioan Pop

Purpose The purpose of this paper is to study the effects of thermal radiation and homogeneous-heterogeneous reactions in the three-dimensional hybrid nanofluid flow past a permeable stretching/shrinking sheet. Design/methodology/approach The combination of aluminum oxide (Al2O3) and copper (Cu) nanoparticles with total volumetric concentration is numerically analyzed using the existing correlations of hybrid nanofluid. With the consideration that both homogeneous and heterogeneous reactions are isothermal while the diffusion coefficients of both autocatalyst and reactant are same, the governing model is simplified into a set of differential (similarity) equations. Findings Using the bvp4c solver, dual solutions are presented, and the stability analysis certifies the physical/real solution. The findings show that the suction parameter is requisite to induce the steady solution for shrinking parameter. Besides, the fluid concentration owing to the shrinking sheet is diminished with the addition of surface reaction. Originality/value The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 937 ◽  
Author(s):  
Fitnat Saba ◽  
Saima Noor ◽  
Naveed Ahmed ◽  
Umar Khan ◽  
Syed Tauseef Mohyud-Din ◽  
...  

This article comprises the study of three-dimensional squeezing flow of (CNT-SiO2/H2O) hybrid nanofluid. The flow is confined inside a rotating channel whose lower wall is stretchable as well as permeable. Heat transfer with viscous dissipation is a main subject of interest. We have analyzed mathematically the benefits of hybridizing SiO 2 -based nanofluid with carbon nanotubes ( CNTs ) nanoparticles. To describe the effective thermal conductivity of the CNTs -based nanofluid, a renovated Hamilton–Crosser model (RHCM) has been employed. This model is an extension of Hamilton and Crosser’s model because it also incorporates the effect of the interfacial layer. For the present flow scenario, the governing equations (after the implementation of similarity transformations) results in a set of ordinary differential equations (ODEs). We have solved that system of ODEs, coupled with suitable boundary conditions (BCs), by implementing a newly proposed modified Hermite wavelet method (MHWM). The credibility of the proposed algorithm has been ensured by comparing the procured results with the result obtained by the Runge-Kutta-Fehlberg solution. Moreover, graphical assistance has also been provided to inspect the significance of various embedded parameters on the temperature and velocity profile. The expression for the local Nusselt number and the skin friction coefficient were also derived, and their influential behavior has been briefly discussed.


Author(s):  
Ve´ronique Penin ◽  
Pascale Kulisa ◽  
Franc¸ois Bario

During the last few decades, the size and weight of turbo-machinery have been continuously reduced. However, by decreasing the distance between rows, rotor-stator interaction is strengthened. Two interactions now have the same magnitude: wake interaction and potential effect. Studying this effect is essential to understand rotor-stator interactions. Indeed, this phenomenon influences the whole flow, including the boundary layer of the upstream and downstream blades, ergo the stability of the flow and the efficiency of the machine. A large scale turbine cascade followed by a specially designed rotating cylinder system is used. Synchronised velocity LDA measurements on the vane profile show the flow and boundary layer behavior due to the moving bars. To help the general understanding and to corroborate our experimental results, numerical investigations are carried out with an unsteady three dimensional Navier-Stokes code. Moreover, the numerical study informs about the potential disturbance to the whole flow of the cascade.


Author(s):  
E.S. Studennikov ◽  
R.S. Ayupov

This paper examines operation modes of a mixed compression air intake with a rectangular cross-section at Mach number 2.0. The perfect gas model was used for the calculation. Calculations were performed for three values of Mach numbers: 1.8, 2.0 and 3.0. k–ε turbulence model was chosen for describing flows with large adverse pressure gradients. Two-dimensional and three-dimensional configurations of the air intake device were examined. Versions of geometry with and without the boundary layer drain system were considered. The influence of the boundary layer drain system on the flow in the air intake and its characteristics was established. Throttle characteristic curves were formed for all the considered modes with regard to the averaged flow parameters. A comparison of the calculation and experimental data showed a good agreement of the results. The obtained results can serve as a basis for further optimization and improvement of the efficiency of the aircraft design layout, increase in the stability margin of air intakes, as well as development of software systems for regulating supersonic input devices.


Sign in / Sign up

Export Citation Format

Share Document