scholarly journals iRIS-RT: Eye Fatigue and Reaction Time Detector

Author(s):  
Kedsara Rakpongsiri

The objective of this research is to develop an instrument to measure eye fatigue and reaction time for decision making. The data were automatically analyzed by the iRIS-RT program designed to measure the contraction or expansion of pupils by means of image processing in order to analyze changes of pupil diameters. The image processing technique is a set of images with continuous and different temporal intervals. The images are then transferred into a computer, stored and analyzed to obtain changes of pupil diameters. Pupil diameter of each image in each time interval is measured and frequency of blinking is detected and displayed on the computer screen in an attempt to analyze eye fatigue and to design the assessment of reaction time. The test program is designed with red, green and blue windows that randomly changes according to the set time in order to determine reaction to the colors and accuracy of decision to select the colors that correspond to those on the test program. The test results with the iRIS-RT program among 40 male and female volunteer participants aged between 18 and 35years reveal that the program is able to preliminarily measure and process eye fatigue. Furthermore, it is able to store and record personal results in the computer and Cloud media that are accessible via global online computer and internet systems. The results can be displayed on personal computers and other mobile devices. With regard to satisfaction of the participants with operations of the device, it is found that the satisfaction was at a high level, or 66.7%, and at the highest level, or 33.3%, on the overall efficiency of the device. From interviewing the experts after the construction of the device on its performance, attributes, size, safety, installation and result display, their satisfaction was at a high level.

Jurnal INFORM ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 62
Author(s):  
Mahmud Suyuti ◽  
Endang Setyati

The digital image processing technique is a product of computing technology development. Medical image data processing based on a computer is a product of computing technology development that can help a doctor to diagnose and observe a patient. This study aimed to perform classification on the image of the thorax by using Convolutional Neural Network (CNN).  The data used in this study is lung thorax images that have previously been diagnosed by a doctor with two classes, namely normal and pneumonia. The amount of data is 2.200, 1.760 for training, and 440 for testing. Three stages are used in image processing, namely scaling, gray scaling, and scratching. This study used Convolutional Neural Network (CNN) method with architecture ResNet-50. In the field of object recognition, CNN is the best method because it has the advantage of being able to find its features of the object image by conducting the convolution process during training. CNN has several models or architectures; one of them is ResNet-50 or Residual Network. The selection of ResNet-50 architecture in this study aimed to reduce the loss of gradients at certain network-level depths during training because the object is a chest image of X-Ray that has a high level of visual similarity between some pathology. Moreover, several visual factors also affect the image so that to produce good accuracy requires a certain level of depth on the CNN network. Optimization during training used Adaptive Momentum (Adam) because it had a bias correction technique that provided better approximations to improve accuracy. The results of this study indicated the thorax image classification with an accuracy of 97.73%.


Jurnal INFORM ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 62-68
Author(s):  
Mahmud Suyuti ◽  
Endang Setyati

The digital image processing technique is a product of computing technology development. Medical image data processing based on a computer is a product of computing technology development that can help a doctor to diagnose and observe a patient. This study aimed to perform classification on the image of the thorax by using Convolutional Neural Network (CNN).  The data used in this study is lung thorax images that have previously been diagnosed by a doctor with two classes, namely normal and pneumonia. The amount of data is 2.200, 1.760 for training, and 440 for testing. Three stages are used in image processing, namely scaling, gray scaling, and scratching. This study used Convolutional Neural Network (CNN) method with architecture ResNet-50. In the field of object recognition, CNN is the best method because it has the advantage of being able to find its features of the object image by conducting the convolution process during training. CNN has several models or architectures; one of them is ResNet-50 or Residual Network. The selection of ResNet-50 architecture in this study aimed to reduce the loss of gradients at certain network-level depths during training because the object is a chest image of X-Ray that has a high level of visual similarity between some pathology. Moreover, several visual factors also affect the image so that to produce good accuracy requires a certain level of depth on the CNN network. Optimization during training used Adaptive Momentum (Adam) because it had a bias correction technique that provided better approximations to improve accuracy. The results of this study indicated the thorax image classification with an accuracy of 97.73%.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Hariharan S

Segmentation is one of the most important and widely used methods in medical image analysis. It is considered to be a high level image processing technique and can be used for many applications in medical imaging. CT images are commonly used in medical field and it provides clear picture of the internal organs. However in some places further processing of CT images are required for disease diagnosis and lesion detection. This work is an effort for bringing out clinical information from liver images of computed tomography based on image processing. Finally liver tumor classifications have been performed using texture based image analysis.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


2012 ◽  
Vol 19 (5) ◽  
pp. 1168-1174
Author(s):  
Li-Zhou ZHANG ◽  
Xiao-Yu HOU ◽  
Yu-Ming ZHANG ◽  
Hong-Jun LI ◽  
Yi-Song CHENG ◽  
...  

2010 ◽  
Vol 18 (6) ◽  
pp. 1340-1344
Author(s):  
Li-Zhou ZHANG ◽  
Dian-Wu WANG ◽  
Yu-Ming ZHANG ◽  
Yi-Song CHENG ◽  
Hong-Jun LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document