scholarly journals The Accuracy of Sorting Beverage Cans and Bottles for a Reverse Vending Machine

Author(s):  
Egkarin Watanyulertsakul

At present, there are many types of beverage packages such as cans and plastic bottles which lead to a large number of waste beverage cans. Furthermore, throwing beverage cans away without management tends to be an ineffective way to get optimal utilization of resources. Hence, the primary emphasis of this work is on the development of automatic sorting of beverage cans for reverse vending machines. In addition, the accuracy testing of sorting beverage cans by the machine was designed based on three techniques which are easy to implement and which will bring sustainable energy innovations with communities’ participation. There are two sampling groups of cans and plastic bottles in the experimental studies. The first group is the group which already has data in the system for using this in a prototype of sorting process. The latter one is the group without data in the system or which has never been used before. Furthermore, the reverse vending machine has two types of proximity sensors; inductive and capacitive which work together. The experimental results of sorting beverage cans and bottles on two sample groups show that the average accuracy of sorting is 99.20%. The sorting of beverage cans and bottles based on magnetic hinge and barcode provides an average accuracy of 79.20% and 50.00%, respectively. Classifying using the proximity sensor has the fastest operation with an average of 2.66 seconds, followed by barcode and hinge. Those takes 4.01 and 5.21 seconds, respectively.

2015 ◽  
Vol 813-814 ◽  
pp. 106-110
Author(s):  
Dalbir Singh ◽  
C. Ganesan ◽  
A. Rajaraman

Composites are being used in variety of applications ranging from defense and aircraft structures, where usage is profuse, to vehicle structures and even for repair and rehabilitation. Most of these composites are made of different laminates glued together with matrix for binding and now-a-days fibers of different types are embedded in a composite matrix. The characterizations of material properties of composites are mostly experimental with analytical modeling used to simulate the system behavior. But many times, the composites develop damage or distress in the form of cracking while they are in service and this adds a different dimension as one has to evaluate the response with the damage so that its performance during its remaining life is satisfactory. This is the objective of the present study where a hybrid approach using experimental results on damaged specimens and then analytical finite element are used to evaluate response. This will considerably help in remaining life assessment-RLA- for composites with damage so that design effectiveness with damage could be assessed. This investigation has been carried out on a typical composite with carbon fiber reinforcements, manufactured by IPCL Baroda (India) with trade name INDCARF-30. Experimental studies were conducted on undamaged and damaged specimens to simulate normal continuous loading and discontinuous loading-and-unloading states in actual systems. Based on the experimental results, material characterization inputs are taken and analytical studies were carried out using ANSYS to assess the response under linear and nonlinear material behavior to find the stiffness decay. Using stiffness decay RLA was computed and curves are given to bring the influence of type of damage and load at which damage had occurred.


Author(s):  
Junkui Mao ◽  
Wen Guo ◽  
Zhenxiong Liu ◽  
Jun Zeng

Experiments were carried out to investigate the cooling effectiveness of a lamellar double-decker impingement/effusion structure. Infrared radiation (I.R.) thermal camera was used to measure the temperature on the outside surface of the lamellar double-decker. Experimental results were obtained for a wide range of governing parameters (blowing rate M (0.0017∼0.0066), the ratio of the jet impingement distance to the diameter of film hole H/D (0.5∼1.25), the ratio of the distance between the jet hole and film hole to the diameter of the film hole P/D (0, 3, 4), and the material of double-decker (Steel and Copper)). It was observed that the local cooling effectiveness η varies with all these parameters in a complicated way. All the results show that higher cooling effectiveness η is achieved in larger blowing rate cases. A certain range of H/D and P/D can be designed to result in the maximum cooling effectiveness η. And η is less sensitive to the material type compared with those parameters such as H/D, M and P/D.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1319-1326 ◽  
Author(s):  
I. E. Gönenç ◽  
D. Orhon ◽  
B. Beler Baykal

Two basic phenomena, reactor hydraulics and mass transport through biofilm coupled with kinetic expressions for substrate transformations were accounted for in order to describe the soluble COD removal mechanism in anaerobic fixed bed reactors. To provide necessary verification, experimental results from the long term operation of the pilot scale anaerobic reactor treating molasses wastewater were used. Theoretical evaluations verified by these experimental studies showed that a bulk zero-order removal rate expression modified by diffusional resistance leading to bulk half-order and first-order rates together with the particular hydraulic conditions could adequately define the overall soluble COD removal mechanism in an anaerobic fixed bed reactor. The experimental results were also used to determine the kinetic constants for practical application. In view of the complexity of the phenomena involved it is found remarkable that a simple simulation model based on biofilm kinetics is a powerful tool for design and operation of anaerobic fixed bed reactors.


2013 ◽  
Vol 634-638 ◽  
pp. 382-385
Author(s):  
Ke Guo Liu ◽  
Li Li Gu ◽  
Hui Guang Hu ◽  
Rong Yang ◽  
Jun Tao

The experimental studies for purification of 1,8-cineole by vacuum batch distillation as well as the application of additives in 1,8-cineole purification were carried out. There were two steps during the purification. In the first step, experimental results showed that the optimal operation conditions for purification of 1,8-cineole were the temperature of the reboiler at about 320.15 K under a certain vacuum degree. In the second step, the optimal operation temperature of the reboiler was 331.15 K. The optimal reflux ratio was generated finally. Vacuum degree was controlled between 1.1 kPa and 1.3 kPa.


A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


2021 ◽  
pp. 46-52
Author(s):  
A.L. Vorontsov

The results of experimental studies on the extrusion of channels from non-strengthening material are presented. Comparison of theoretical calculations with experimental results showed the high accuracy of the derived formulas. Keywords: die forging, extrusion, punch, matrix, misalignment, plane strain. [email protected]


2008 ◽  
Vol 22 (11) ◽  
pp. 1019-1024 ◽  
Author(s):  
SANG-KYUN WOO ◽  
YOUNG-CHUL SONG ◽  
HONG-CHUL RHIM

The objective of this study is to determine crack depth located under reinforcement in concrete specimens using ultrasonic method. Experimental studies were performed on concrete specimens containing vertical and inclined surface-opening cracks with known depths. Experimental results have shown that the crack depth can be effectively measured when the distance between the probes is less than the crack depth. The effect of reinforcement on crack depth estimation is studied through a model by considering P-wave diffraction at the tip of crack and reinforcement. In addition, experimental results show that the ultrasonic method is one of useful methods to evaluate the crack depth in reinforced concrete.


Author(s):  
Tomasz Piatkowski ◽  
Miroslaw Wolski

The paper presents a proposal for a method for determining the geometrical dimensions of a rotary flexible fence used in the process of automatic sorting of small-sized objects transported on conveyor belts. The method consists of three stages: 1 – determination of the preferred outline and material of the fence, 2 – optimal parameters determination of the sorting process, 3 – dimensions selection for the preferred geometry of the fence with reference to the mass of scraped objects and the sorting process parameters. The stages adopted allow to select the optimal mass-spring-damper characteristics of the fences in the context of the assumed level of efficiency, reliability and minimization of the dynamic reactions of the sorting process.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Long Chen ◽  
Fengfeng Zhang ◽  
Wei Zhan ◽  
Minfeng Gan ◽  
Lining Sun

Abstract Background The traditional navigation interface was intended only for two-dimensional observation by doctors; thus, this interface does not display the total spatial information for the lesion area. Surgical navigation systems have become essential tools that enable for doctors to accurately and safely perform complex operations. The image navigation interface is separated from the operating area, and the doctor needs to switch the field of vision between the screen and the patient’s lesion area. In this paper, augmented reality (AR) technology was applied to spinal surgery to provide more intuitive information to surgeons. The accuracy of virtual and real registration was improved via research on AR technology. During the operation, the doctor could observe the AR image and the true shape of the internal spine through the skin. Methods To improve the accuracy of virtual and real registration, a virtual and real registration technique based on an improved identification method and robot-assisted method was proposed. The experimental method was optimized by using the improved identification method. X-ray images were used to verify the effectiveness of the puncture performed by the robot. Results The final experimental results show that the average accuracy of the virtual and real registration based on the general identification method was 9.73 ± 0.46 mm (range 8.90–10.23 mm). The average accuracy of the virtual and real registration based on the improved identification method was 3.54 ± 0.13 mm (range 3.36–3.73 mm). Compared with the virtual and real registration based on the general identification method, the accuracy was improved by approximately 65%. The highest accuracy of the virtual and real registration based on the robot-assisted method was 2.39 mm. The accuracy was improved by approximately 28.5% based on the improved identification method. Conclusion The experimental results show that the two optimized methods are highly very effective. The proposed AR navigation system has high accuracy and stability. This system may have value in future spinal surgeries.


Sign in / Sign up

Export Citation Format

Share Document