scholarly journals Identification of Soft Fall based on Falling State Occurrences

Author(s):  
Thein Gi Kyaw ◽  
Anant Choksuriwong ◽  
Nikom Suvonvorn

Fall detection techniques for helping the elderly were developed based on identifying falling states using simulated falls. However, some real-life falling states were left undetected, which led to this work on analysing falling states. The aim was to find the differences between active daily living and soft falls where falling states were undetected. This is the first consideration to be based on the threshold-based algorithms using the acceleration data stored in an activity database. This study addresses soft falls in addition to the general falls based on two falling states. Despite the number of false alarms being higher rising from 18.5% to 56.5%, the sensitivity was increased from 52% to 92.5% for general falls, and from 56% to 86% for soft falls. Our experimental results show the importance of state occurrence for soft fall detection, and will be used to build a learning model for soft fall detection.

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2426 ◽  
Author(s):  
José Alves ◽  
Joana Silva ◽  
Eduardo Grifo ◽  
Carlos Resende ◽  
Inês Sousa

Falls are one of the most common problems in the elderly population. Therefore, each year more solutions for automatic fall detection are emerging. This paper proposes a single accelerometer algorithm for wearable devices that works for three different body locations: chest, waist and pocket, without a calibration step being required. This algorithm is able to be fully executed on a wearable device and no external devices are necessary for data processing. Additionally, a study of the accelerometer sampling rate, that allows the algorithm to achieve a better performance, was performed. The algorithm was validated with a continuous dataset with daily living activities and 272 simulated falls. Considering the trade-off between sensitivity and the number of false alarms the most suitable sampling rate found was 50 Hz. The proposed algorithm was able to achieve a trade-off of no false alarms and 89.5% of fall detection rate when wearing the sensor on the user’s waist with a medium sensitivity level of the algorithm. In conclusion, this paper presents a reliable solution for automatic fall detection that can be adapted to different usages and conditions, since it can be used in different body locations and its sensitivity can be adapted to different subjects according to their physical activity level.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Glen Debard ◽  
Marc Mertens ◽  
Toon Goedemé ◽  
Tinne Tuytelaars ◽  
Bart Vanrumste

More than thirty percent of persons over 65 years fall at least once a year and are often not able to get up again. Camera-based fall detection systems can help by triggering an alarm when falls occur. Previously we showed that real-life data poses significant challenges, resulting in high false alarm rates. Here, we show three ways to tackle this. First, using a particle filter combined with a person detector increases the robustness of our foreground segmentation, reducing the number of false alarms by 50%. Second, selecting only nonoccluded falls for training further decreases the false alarm rate on average from 31.4 to 26 falls per day. But, most importantly, this improvement is also shown by the doubling of the AUC of the precision-recall curve compared to using all falls. Third, personalizing the detector by adding several days containing only normal activities, no fall incidents, of the monitored person to the training data further increases the robustness of our fall detection system. In one case, this reduced the number of false alarms by a factor of 7 while in another one the sensitivity increased by 17% for an increase of the false alarms of 11%.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2254
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Over the last few years, the use of smartwatches in automatic Fall Detection Systems (FDSs) has aroused great interest in the research of new wearable telemonitoring systems for the elderly. In contrast with other approaches to the problem of fall detection, smartwatch-based FDSs can benefit from the widespread acceptance, ergonomics, low cost, networking interfaces, and sensors that these devices provide. However, the scientific literature has shown that, due to the freedom of movement of the arms, the wrist is usually not the most appropriate position to unambiguously characterize the dynamics of the human body during falls, as many conventional activities of daily living that involve a vigorous motion of the hands may be easily misinterpreted as falls. As also stated by the literature, sensor-fusion and multi-point measurements are required to define a robust and reliable method for a wearable FDS. Thus, to avoid false alarms, it may be necessary to combine the analysis of the signals captured by the smartwatch with those collected by some other low-power sensor placed at a point closer to the body’s center of gravity (e.g., on the waist). Under this architecture of Body Area Network (BAN), these external sensing nodes must be wirelessly connected to the smartwatch to transmit their measurements. Nonetheless, the deployment of this networking solution, in which the smartwatch is in charge of processing the sensed data and generating the alarm in case of detecting a fall, may severely impact on the performance of the wearable. Unlike many other works (which often neglect the operational aspects of real fall detectors), this paper analyzes the actual feasibility of putting into effect a BAN intended for fall detection on present commercial smartwatches. In particular, the study is focused on evaluating the reduction of the battery life may cause in the watch that works as the core of the BAN. To this end, we thoroughly assess the energy drain in a prototype of an FDS consisting of a smartwatch and several external Bluetooth-enabled sensing units. In order to identify those scenarios in which the use of the smartwatch could be viable from a practical point of view, the testbed is studied with diverse commercial devices and under different configurations of those elements that may significantly hamper the battery lifetime.


2014 ◽  
Vol 522-524 ◽  
pp. 1137-1142
Author(s):  
Seong Hyun Kim ◽  
Dong Wook Kim

As the society ages, the number of falls and fractures suffered by the elderly is increasing significantly in numbers. However, studies with reliable statistics and analysis on falls of this specific population were scarce. Fractures due to falls of the elderly are potentially of critical severity, and, therefore, it is important to detect such incidents with accuracy to prevent fractures. This necessitates an effective system to detect falls. For this reason, we induced simulated falls that resemble actual falls as much as possible by using a fall-inducing apparatus, and observed the movement of the body during the falls. The movement of the body was sensed using 3-axes acceleration sensors and bluetooth modules, which would not obstruct the movement as wired sensors or movement analysis systems would do. Using the acceleration data detected by the sensors, a fall detection algorithm was developed to detect a fall and, if any, its direction. Unlike existing studies that used sum-vectors and inclination sensors to detect the direction of falls, which took too much time, the system developed in this study could detect the direction of the fall by comparing only the acceleration data without requiring any other equations, resulting in faster response times.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5948
Author(s):  
Taekjin Han ◽  
Wonho Kang ◽  
Gyunghyun Choi

Falls are the leading cause of fatal injuries in the elderly such as fractures, and secondary damage from falls can lead to death. As such, fall detection is a crucial topic. However, due to the trade-off relationship between privacy preservation, user convenience, and fall detection performance, it is generally difficult to develop a fall detection system that simultaneously satisfies all conditions. The main goal of this study is to build a practical fall detection framework that can effectively classify the various behavior types into “Fall” and “Activities of daily living (ADL)” while securing privacy preservation and user convenience. For this purpose, signal data containing the motion information of objects was collected using a non-contact, unobtrusive, and non-restraint impulse-radio ultra wideband (IR-UWB) radar. These data were then applied to a convolutional neural network (CNN) algorithm to create an object behavior type classifier that can classify the behavior types of objects into “Fall” and “ADL.” The data were collected by actually performing various activities of daily living, including falling. The performance of the classifier yielded satisfactory results. By combining an IR-UWB and CNN algorithm, this study demonstrates the feasibility of building a practical fall detection system that exceeds a certain level of detection accuracy while also ensuring privacy preservation and user convenience.


2013 ◽  
Vol 647 ◽  
pp. 854-860
Author(s):  
Gye Rok Jeon ◽  
Young Jae Kim ◽  
Ah Young Jeon ◽  
Sang Hoon Lee ◽  
Jae Hyung Kim ◽  
...  

Falls detection systems have been developed in recent years because falls are detrimental events that can have a devastating effect on health of the elderly population. Current fall detecting methods mainly employ accelerometer to discriminate falls from activities of daily living (ADL). However, this makes it difficult to distinguish real falls from certain fall-like activities such as jogging and jumping. In this paper, an accurate fall detection system was implemented using two tri-axial accelerometers. By attaching the accelerometers on the chest and the abdomen, our system can effectively differentiate between falls and non-fall events.The Diff_Z and Sum_diff_Z parameter resulted in falls detection rate of 100%, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Dongha Lim ◽  
Chulho Park ◽  
Nam Ho Kim ◽  
Sang-Hoon Kim ◽  
Yun Seop Yu

Falls are a serious medical and social problem among the elderly. This has led to the development of automatic fall-detection systems. To detect falls, a fall-detection algorithm that combines a simple threshold method and hidden Markov model (HMM) using 3-axis acceleration is proposed. To apply the proposed fall-detection algorithm and detect falls, a wearable fall-detection device has been designed and produced. Several fall-feature parameters of 3-axis acceleration are introduced and applied to a simple threshold method. Possible falls are chosen through the simple threshold and are applied to two types of HMM to distinguish between a fall and an activity of daily living (ADL). The results using the simple threshold, HMM, and combination of the simple method and HMM were compared and analyzed. The combination of the simple threshold method and HMM reduced the complexity of the hardware and the proposed algorithm exhibited higher accuracy than that of the simple threshold method.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5465
Author(s):  
Giuseppe Furnari ◽  
Francesco Vattiato ◽  
Dario Allegra ◽  
Filippo Luigi Maria Milotta ◽  
Alessandro Orofino ◽  
...  

The production process of a wafer in the semiconductor industry consists of several phases such as a diffusion and associated defectivity test, parametric test, electrical wafer sort test, assembly and associated defectivity tests, final test, and burn-in. Among these, the fault detection phase is critical to maintain the low number and the impact of anomalies that eventually result in a yield loss. The understanding and discovery of the causes of yield detractors is a complex procedure of root-cause analysis. Many parameters are tracked for fault detection, including pressure, voltage, power, or valve status. In the majority of the cases, a fault is due to a combination of two or more parameters, whose values apparently stay within the designed and checked control limits. In this work, we propose an ensembled anomaly detector which combines together univariate and multivariate analyses of the fault detection tracked parameters. The ensemble is based on three proposed and compared balancing strategies. The experimental phase is conducted on two real datasets that have been gathered in the semiconductor industry and made publicly available. The experimental validation, also conducted to compare our proposal with other traditional anomaly detection techniques, is promising in detecting anomalies retaining high recall with a low number of false alarms.


Author(s):  
Sai Siong Jun ◽  
Hafiz Rashidi Ramli ◽  
Azura Che Soh ◽  
Noor Ain Kamsani ◽  
Raja Kamil Raja Ahmad ◽  
...  

Falls are dangerous and contribute to over 80% of injury-related hospitalization especially amongst the elderly. Hence, fall detection is important for preventing severe injuries and accidental deaths. Meanwhile, recognizing human activity is important for monitoring health status and quality of life as it can be applied in geriatric care and healthcare in general. This research presents the development of a fall detection and human activity recognition system using Threshold Based Method (TBM) and Neural Network (NN). Intentional forward fall and six other activities of daily living (ADLs), which include running, jumping, walking, sitting, lying, and standing are performed by 15 healthy volunteers in a series of experiments. There are four important stages involved in fall detection and ADL recognition, which are signal filtering, segmentation, features extraction and classification. For classification, TBM achieved an accuracy of 98.41% and 95.40% for fall detection and activity recognition respectively whereas NN achieved an accuracy of 97.78% and 96.77% for fall detection and activity recognition respectively.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1357
Author(s):  
Simon Scheurer ◽  
Janina Koch ◽  
Martin Kucera ◽  
Hȧkon Bryn ◽  
Marcel Bärtschi ◽  
...  

Falls are the primary contributors of accidents in elderly people. An important factor of fall severity is the amount of time that people lie on the ground. To minimize consequences through a short reaction time, the motion sensor “AIDE-MOI” was developed. “AIDE-MOI” senses acceleration data and analyzes if an event is a fall. The threshold-based fall detection algorithm was developed using motion data of young subjects collected in a lab setup. The aim of this study was to improve and validate the existing fall detection algorithm. In the two-phase study, twenty subjects (age 86.25 ± 6.66 years) with a high risk of fall (Morse > 65 points) were recruited to record motion data in real-time using the AIDE-MOI sensor. The data collected in the first phase (59 days) was used to optimize the existing algorithm. The optimized second-generation algorithm was evaluated in a second phase (66 days). The data collected in the two phases, which recorded 31 real falls, was split-up into one-minute chunks for labelling as “fall” or “non-fall”. The sensitivity and specificity of the threshold-based algorithm improved significantly from 27.3% to 80.0% and 99.9957% (0.43) to 99.9978% (0.17 false alarms per week and subject), respectively.


Sign in / Sign up

Export Citation Format

Share Document