scholarly journals A Feasibility Study of the Use of Smartwatches in Wearable Fall Detection Systems

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2254
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Over the last few years, the use of smartwatches in automatic Fall Detection Systems (FDSs) has aroused great interest in the research of new wearable telemonitoring systems for the elderly. In contrast with other approaches to the problem of fall detection, smartwatch-based FDSs can benefit from the widespread acceptance, ergonomics, low cost, networking interfaces, and sensors that these devices provide. However, the scientific literature has shown that, due to the freedom of movement of the arms, the wrist is usually not the most appropriate position to unambiguously characterize the dynamics of the human body during falls, as many conventional activities of daily living that involve a vigorous motion of the hands may be easily misinterpreted as falls. As also stated by the literature, sensor-fusion and multi-point measurements are required to define a robust and reliable method for a wearable FDS. Thus, to avoid false alarms, it may be necessary to combine the analysis of the signals captured by the smartwatch with those collected by some other low-power sensor placed at a point closer to the body’s center of gravity (e.g., on the waist). Under this architecture of Body Area Network (BAN), these external sensing nodes must be wirelessly connected to the smartwatch to transmit their measurements. Nonetheless, the deployment of this networking solution, in which the smartwatch is in charge of processing the sensed data and generating the alarm in case of detecting a fall, may severely impact on the performance of the wearable. Unlike many other works (which often neglect the operational aspects of real fall detectors), this paper analyzes the actual feasibility of putting into effect a BAN intended for fall detection on present commercial smartwatches. In particular, the study is focused on evaluating the reduction of the battery life may cause in the watch that works as the core of the BAN. To this end, we thoroughly assess the energy drain in a prototype of an FDS consisting of a smartwatch and several external Bluetooth-enabled sensing units. In order to identify those scenarios in which the use of the smartwatch could be viable from a practical point of view, the testbed is studied with diverse commercial devices and under different configurations of those elements that may significantly hamper the battery lifetime.

Author(s):  
Mohammed Faeik Ruzaij Al-Okby ◽  
Kerstin Thurow

Fall detection systems for the elderly are very important to protect this type of users. The early detection of the fall of the elderly has a major impact on saving their lives and avoiding the deterioration of the negative medical effects resulting from the effect of the patient falling on a hard surface. One of the constraints in fall detection systems are false-negative errors (no fall detection) or false-positive errors (sending a false warning without real fall accident). These errors have to be reduced significantly. In this paper, an innovative method to reduce fall detection system errors is proposed. The system consists of two orientation detection sensors to track the body orientation instead of using a single sensor in the previous systems which enhances the system accuracy and reduces the false-negative and false-positive errors. The system uses a small size IoT-based controller to process the sensor's information and make the alarm decision based on specific thresholds. The output alarm of the system includes an email sent to the caregivers via the embedded Wi-Fi ESP8266 module as well as an SMS message to the caregivers’ phones via GSM modules to ensure that the alarm message arrives in the absence of internet coverage for the patient or the caregiver. The system is powered by a small lithium-Ion battery. All sensors and modules of the system are combined in a small rubber box that can be fixed in a waist belt or the chest rejoin of the user body. Several tests have been made in different procedures. The tests revealed that the new approach improves the accuracy of the system and reduces the possibility of triggering wrong alarms.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Markus Bajones ◽  
David Fischinger ◽  
Astrid Weiss ◽  
Daniel Wolf ◽  
Markus Vincze ◽  
...  

We present the robot developed within the Hobbit project, a socially assistive service robot aiming at the challenge of enabling prolonged independent living of elderly people in their own homes. We present the second prototype (Hobbit PT2) in terms of hardware and functionality improvements following first user studies. Our main contribution lies within the description of all components developed within the Hobbit project, leading to autonomous operation of 371 days during field trials in Austria, Greece, and Sweden. In these field trials, we studied how 18 elderly users (aged 75 years and older) lived with the autonomously interacting service robot over multiple weeks. To the best of our knowledge, this is the first time a multifunctional, low-cost service robot equipped with a manipulator was studied and evaluated for several weeks under real-world conditions. We show that Hobbit’s adaptive approach towards the user increasingly eased the interaction between the users and Hobbit. We provide lessons learned regarding the need for adaptive behavior coordination, support during emergency situations, and clear communication of robotic actions and their consequences for fellow researchers who are developing an autonomous, low-cost service robot designed to interact with their users in domestic contexts. Our trials show the necessity to move out into actual user homes, as only there can we encounter issues such as misinterpretation of actions during unscripted human-robot interaction.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 622
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Fall Detection Systems (FDSs) based on wearable technologies have gained much research attention in recent years. Due to the networking and computing capabilities of smartphones, these widespread personal devices have been proposed to deploy cost-effective wearable systems intended for automatic fall detection. In spite of the fact that smartphones are natively provided with inertial sensors (accelerometers and gyroscopes), the effectiveness of a smartphone-based FDS can be improved if it also exploits the measurements collected by small low-power wireless sensors, which can be firmly attached to the user’s body without causing discomfort. For these architectures with multiple sensing points, the smartphone transported by the user can act as the core of the FDS architecture by processing and analyzing the data measured by the external sensors and transmitting the corresponding alarm whenever a fall is detected. In this context, the wireless communications with the sensors and with the remote monitoring point may impact on the general performance of the smartphone and, in particular, on the battery lifetime. In contrast with most works in the literature (which disregard the real feasibility of implementing an FDS on a smartphone), this paper explores the actual potential of current commercial smartphones to put into operation an FDS that incorporates several external sensors. This study analyzes diverse operational aspects that may influence the consumption (as the use of a GPS sensor, the coexistence with other apps, the retransmission of the measurements to an external server, etc.) and identifies practical scenarios in which the deployment of a smartphone-based FDS is viable.


Author(s):  
Stefano Abbate ◽  
Marco Avvenuti ◽  
Guglielmo Cola ◽  
Paolo Corsini ◽  
Janet Light ◽  
...  

2018 ◽  
Vol 22 (1) ◽  
pp. 53-61
Author(s):  
A. S. Markovskiy ◽  
N. I. Svekolkin

In the context of toughening of the requirements in the field of information security (the conditions of its safety) difficult-to-implement, the increasing number of external destabilizing factors (including the high level of false alarms), the increase of scopes and speed of information changes, and the drawbacks inherent to most databases, the probability of anomalies occurrence in the process of operation (acquisition, processing and storage) of relational databases is high. The article provides detailed description of the method for the construction a formal grammar executed by a SQL query of relational databases. This approach considers formal grammar under study from a mathematical point of view, as a model that defines a set of discrete objects in the form of description of the original objects and the rules for constructing new objects from the original and already created ones. Thus, a system of rules for further work is formed, represented in the form of a system of equations. The described method makes it possible to determine mathematical properties of the similarity invariants of the SQL query of relational databases intended for the collection, storage and analysis of statistical data, such as reference data of the operation of software and hardware, various statistical data about population, .production etc. The results of the testing of the demonstration prototype of the anomaly detection system, implemented on the basis of the proposed method, obtained in the course of the experimental implementation are presented in comparison with some existing and applied security systems. The solution proposed in the article is effective, simple and universal for the majority of currently used relational databases, In addition, it has a low cost of financial expenses in case of practical implementation.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 155
Author(s):  
Juan Antonio Castro-García ◽  
Alberto Jesús Molina-Cantero ◽  
Isabel María Gómez-González ◽  
Sergio Lafuente-Arroyo ◽  
Manuel Merino-Monge

Detecting stress when performing physical activities is an interesting field that has received relatively little research interest to date. In this paper, we took a first step towards redressing this, through a comprehensive review and the design of a low-cost body area network (BAN) made of a set of wearables that allow physiological signals and human movements to be captured simultaneously. We used four different wearables: OpenBCI and three other open-hardware custom-made designs that communicate via bluetooth low energy (BLE) to an external computer—following the edge-computingconcept—hosting applications for data synchronization and storage. We obtained a large number of physiological signals (electroencephalography (EEG), electrocardiography (ECG), breathing rate (BR), electrodermal activity (EDA), and skin temperature (ST)) with which we analyzed internal states in general, but with a focus on stress. The findings show the reliability and feasibility of the proposed body area network (BAN) according to battery lifetime (greater than 15 h), packet loss rate (0% for our custom-made designs), and signal quality (signal-noise ratio (SNR) of 9.8 dB for the ECG circuit, and 61.6 dB for the EDA). Moreover, we conducted a preliminary experiment to gauge the main ECG features for stress detection during rest.


2020 ◽  
Vol 9 (3) ◽  
pp. 42
Author(s):  
Rahim Haiahem ◽  
Pascale Minet ◽  
Selma Boumerdassi ◽  
Leila Azouz Saidane

High accuracy air pollution monitoring in a smart city requires the deployment of a huge number of sensors in this city. One of the most appropriate wireless technologies expected to support high density deployment is LoRaWAN which belongs to the Low Power Wide Area Network (LPWAN) family and offers long communication range, multi-year battery lifetime and low cost end devices. It has been designed for End Devices (EDs) and applications that need to send small amounts of data a few times per hour. However, a high number of end devices breaks the orthogonality of LoRaWAN transmissions, which was one of the main advantages of LoRaWAN. Hence, network performances are strongly impacted. To solve this problem, we propose a solution called OAPM (Orthogonal Air Pollution Monitoring) which ensures the orthogonality of LoRaWAN transmissions and provides accurate air pollution monitoring. In this paper, we show how to organize EDs into clusters and sub-clusters, assign transmission times to EDs, configurate and synchronize them, taking into account the specificities of LoRaWAN and the features of the air pollution monitoring application. Simulation results corroborate the very good behavior of OAPM.


2013 ◽  
Vol 647 ◽  
pp. 854-860
Author(s):  
Gye Rok Jeon ◽  
Young Jae Kim ◽  
Ah Young Jeon ◽  
Sang Hoon Lee ◽  
Jae Hyung Kim ◽  
...  

Falls detection systems have been developed in recent years because falls are detrimental events that can have a devastating effect on health of the elderly population. Current fall detecting methods mainly employ accelerometer to discriminate falls from activities of daily living (ADL). However, this makes it difficult to distinguish real falls from certain fall-like activities such as jogging and jumping. In this paper, an accurate fall detection system was implemented using two tri-axial accelerometers. By attaching the accelerometers on the chest and the abdomen, our system can effectively differentiate between falls and non-fall events.The Diff_Z and Sum_diff_Z parameter resulted in falls detection rate of 100%, respectively.


Sign in / Sign up

Export Citation Format

Share Document