Study on Local Fracture Failure Cases and Structural Analysis of Onshore Drilling Mud Motor

Author(s):  
Sung-Gyu Park ◽  
Hyung-Ick Kim ◽  
Seung-Chan Kim ◽  
Chul-Soon Shin ◽  
Seong-Yong Kwon ◽  
...  
1999 ◽  
Vol 66 (1) ◽  
pp. 62-68
Author(s):  
M. D. Nestorovic´ ◽  
E. Chu ◽  
N. Triantafyllidis

Surface bifurcation is an instability mechanism which appears in the form of surface waviness on traction-free surfaces in ductile solids subjected to large strains. In sheet metal forming, the practical interest in this phenomenon stems from the fact that it occurs past the onset of localization, i.e., the forming limit, but prior to the local fracture failure in a quasi-static, monotonic loading process. In this work, we apply the general theory for surface bifurcation in a homogeneously strained, anisotropic, rate-independent, elastoplastic half-space, to study the influence of material anisotropy on the onset of surface instabilities. In particular, we calculate the critical principal strains ε1cε2c and the corresponding eigenmode orientation angle Ωc when the principal strain axes are at a fixed angle a with respect to the rolling direction of the solid. The presented calculations are for a 2024-T3 aluminum alloy, whose constitutive properties have been determined experimentally. It is found that by varying the strain orientation angle α, the surface bifurcation strains can vary up to an order of 80 percent for in-plane principal strains of a different sign, but only up to an order of ten percent for principal strains of the same sign. The eigenmode orientation angle Ωc is calculated for a particular strain orientation (α=π/6), for which case it is found that Ωc is close to the forming limit angle ψc only for positive principal strains. The presentation is concluded by a discussion of the influence of the anisotropy and the yield surface parameters of the constitutive model on surface bifurcation.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


1985 ◽  
Vol 46 (2) ◽  
pp. 235-241 ◽  
Author(s):  
F. Lançon ◽  
L. Billard ◽  
J. Laugier ◽  
A. Chamberod

1973 ◽  
Vol 34 (C8) ◽  
pp. C8-63-C8-63
Author(s):  
J. BARRINGTON LEIGH ◽  
G. ROSENBAUM

Sign in / Sign up

Export Citation Format

Share Document