Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli

2002 ◽  
Vol 26 (11) ◽  
pp. 1513-1520
1991 ◽  
Vol 56 (7) ◽  
pp. 1400-1403
Author(s):  
Václav Svoboda

The effect of liquid surface curvature on enthalpy of vaporization is investigated. The limits are found at which this effect begins to manifest itself both for the concave and convex surface.


1991 ◽  
Vol 113 (4) ◽  
pp. 858-864 ◽  
Author(s):  
C. Gau ◽  
C. M. Chung

Experiments are performed to study surface curvature effects on the impingement cooling flow and the heat transfer processes over a concave and a convex surface. A single air jet issuing from different size slots continuously impinges normally on the concave side or the convexside of a heated semicylindrical surface. An electrical resistance wire is used to generate smoke, which allows us to visualize the impinging flow structure. The local heat transfer Nusselt number along the surfaces is measured. For impingement on a convex surface, three-dimensional counterrotating vortices on the stagnation point are initiated, which result in the enhancement of the heat transfer process. For impingement on a concave surface, the heat transfer Nusselt number increases with increasing surface curvature, which suggests the initiation of Taylor–Go¨rtler vortices along the surface. In the experiment, the Reynolds number ranges from 6000 to 350,000, the slot-to-plate spacing from 2 to 16, and the diameter-to-slot-width ratio D/b from 8 to 45.7. Correlations of both the stagnation point and the average Nusselt number over the curved surface, which account for the surface curvature effect, are presented.


2019 ◽  
Vol 871 ◽  
pp. 896-924 ◽  
Author(s):  
Dhiren Mistry ◽  
Jimmy Philip ◽  
James R. Dawson

In this paper we investigate the continuous, local exchange of fluid elements as they are entrained and detrained across the turbulent/non-turbulent interface (TNTI) in a high Reynolds number axisymmetric jet. To elucidate characteristic kinematic features of local entrainment and detrainment processes, simultaneous high-speed particle image velocimetry and planar laser-induced fluorescence measurements were undertaken. Using an interface-tracking technique, we evaluate and analyse the conditional dependence of local entrainment velocity in a frame of reference moving with the TNTI in terms of the interface geometry and the local flow field. We find that the local entrainment velocity is intermittent with a characteristic length scale of the order of the Taylor micro-scale and that the contribution to the net entrainment rate arises from the imbalance between local entrainment and detrainment rates that occurs with a ratio of two parts of entrainment to one part detrainment. On average, an increase in local entrainment is correlated with excursions of the TNTI towards jet centreline into regions of higher streamwise momentum, convex surface curvature facing the turbulent side of the jet and along the leading edges of the interface. In contrast, detrainment is correlated with excursions of the TNTI away from the jet centreline into regions of lower streamwise momentum, concave surface curvature and along the trailing edge. We find that strong entrainment is characterised by a local counterflow velocity field in the frame of reference moving with the TNTI which enhances the transport of rotational and irrotational fluid elements. On the other hand, detrainment is characterised by locally uniform flow fields with the local fluid velocity on either side of the TNTI advecting in the same direction. These local flow patterns and the strength of entrainment or detrainment rates are also observed to be strongly influenced by the presence and relative strength of vortical structures which are of the order of the Taylor micro-scale that populate the turbulent region along the jet boundary.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Jacob D. Moore ◽  
Christopher Yoon ◽  
David G. Bogard

Abstract Surface curvature has been shown to have significant effects on the film cooling performance of round holes, but the literature include few studies of its effects on shaped holes despite their prevalence in gas turbines. Experiments were performed using two rows of holes placed on the suction side of a scaled-up turbine blade in a low Mach number linear cascade wind tunnel with low freestream turbulence. The rows were placed in regions of high and low convex surface curvature. Geometries and flow conditions for the rows were matched to those from previous flat plate studies. Comparison of the adiabatic effectiveness results from the high curvature and flat plate rows revealed the same trends as those in the literature using round holes, with increased performance for the high curvature row at lower blowing ratios and the opposite at higher ones. The low curvature row had similar performance to the flat plate row at lower blowing ratios, suggesting the mild convex curvature had little beneficial effect. At higher blowing ratios, the low curvature row had inferior performance, which was attributed to the local freestream adverse pressure gradient that generated additional turbulence, promoting jet-to-mainstream mixing and decreasing performance.


2019 ◽  
Vol 29 (8) ◽  
pp. 2885-2910 ◽  
Author(s):  
Dandan Qiu ◽  
Lei Luo ◽  
Songtao Wang ◽  
Bengt Ake Sunden ◽  
Xinhong Zhang

Purpose This study aims to focus on the surface curvature, jet to target spacing and jet Reynolds number effects on the heat transfer and fluid flow characteristics of a slot jet impinging on a confined concave target surface at constant jet to target spacing. Design/methodology/approach Numerical simulations are used in this research. Jet to target spacing, H/B is varying from 1.0 to 2.2, B is the slot width. The jet Reynolds number, Rej, varies from 8,000 to 40,000, and the surface curvature, R2/B, varies from 4 to 20. Results of the target surface heat transfer, flow parameters and fluid flow in the concave channel are performed. Findings It is found that an obvious backflow occurs near the upper wall. Both the local and averaged Nusselt numbers considered in the defined region respond positively to the Rej. The surface curvature plays a positive role in increasing the averaged Nusselt number for smaller surface curvature (4-15) but affects little as the surface curvature is large enough (> 15). The thermal performance is larger for smaller surface curvature and changes little as the surface curvature is larger than 15. The jet to target spacing shows a negative effect in heat transfer enhancement and thermal performance. Originality/value The surface curvature effects are conducted by verifying the concave surface with constant jet size. The flow characteristics are first obtained for the confined impingement cases. Then confined and unconfined slot jet impingements are compared. An ineffective point for surface curvature effects on heat transfer and thermal performance is obtained.


1985 ◽  
Vol 161 (-1) ◽  
pp. 347 ◽  
Author(s):  
K. C. Muck ◽  
P. H. Hoffmann ◽  
P. Bradshaw

1976 ◽  
Vol 98 (3) ◽  
pp. 550-557 ◽  
Author(s):  
D. J. Wilson ◽  
R. J. Goldstein

The effect of surface curvature on the development of a two-dimensional wall jet is investigated experimentally by direct comparison between a wall jet flowing around the convex surface of a circular cylinder, and its plane flow equivalent. Centrifugal force instabilities introduce rapid mixing of the curved wall jet with its surroundings, and cause significant increases in turbulence intensity and Reynolds shear stress in the jet. Large departures from self-preservation of the turbulence velocity field in the curved jet are observed, while the streamwise mean velocity profiles retain similar shapes for downstream development. Models for curvature effects on eddy viscosity are compared with experimentally measured values, and indicate that a simple correction for the effects of curvature is possible.


Sign in / Sign up

Export Citation Format

Share Document