scholarly journals Intra-Articular Drug Delivery Systems for Osteoarthritis Treatment

2010 ◽  
Vol 78 (3) ◽  
pp. 620-620
Author(s):  
PRADAL

Intra⁃articular injection is one of the most important treatment for osteoarthritis (OA) drug administration. It would improve the pharmacotherapy efficacy and reduce the adverse drug reaction and toxic effect of drugs. In the last decades, the microspheres, nanoparticles, hydrogels, and other drug delivery systems have been extensively studied in OA therapy. This paper reviews the late research development on OA treated via IA drug delivery systems.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2166
Author(s):  
Yifeng Cao ◽  
Yifeng Ma ◽  
Yi Tao ◽  
Weifeng Lin ◽  
Ping Wang

Osteoarthritis (OA) is the most prevalent degenerative joint disease affecting millions of people worldwide. Currently, clinical nonsurgical treatments of OA are only limited to pain relief, anti-inflammation, and viscosupplementation. Developing disease-modifying OA drugs (DMOADs) is highly demanded for the efficient treatment of OA. As OA is a local disease, intra-articular (IA) injection directly delivers drugs to synovial joints, resulting in high-concentration drugs in the joint and reduced side effects, accompanied with traditional oral or topical administrations. However, the injected drugs are rapidly cleaved. By properly designing the drug delivery systems, prolonged retention time and targeting could be obtained. In this review, we summarize the drugs investigated for OA treatment and recent advances in the IA drug delivery systems, including micro- and nano-particles, liposomes, and hydrogels, hoping to provide some information for designing the IA injected formulations.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Sign in / Sign up

Export Citation Format

Share Document