scholarly journals Unusual winter activity of Bufo bufo (Anura: Bufonidae)

Author(s):  
Abdullah ALTUNIŞIK ◽  
Yılmaz KARA
Keyword(s):  
2021 ◽  
pp. 030098582110063
Author(s):  
Francesco C. Origgi ◽  
Patricia Otten ◽  
Petra Lohmann ◽  
Ursula Sattler ◽  
Thomas Wahli ◽  
...  

A comparative study was carried out on common and agile frogs ( Rana temporaria and R. dalmatina) naturally infected with ranid herpesvirus 3 (RaHV3) and common toads ( Bufo bufo) naturally infected with bufonid herpesvirus 1 (BfHV1) to investigate common pathogenetic pathways and molecular mechanisms based on macroscopic, microscopic, and ultrastructural pathology as well as evaluation of gene expression. Careful examination of the tissue changes, supported by in situ hybridization, at different stages of development in 6 frogs and 14 toads revealed that the skin lesions are likely transient, and part of a tissue cycle necessary for viral replication in the infected hosts. Transcriptomic analysis, carried out on 2 naturally infected and 2 naïve common frogs ( Rana temporaria) and 2 naturally infected and 2 naïve common toads ( Bufo bufo), revealed altered expression of genes involved in signaling and cell remodeling in diseased animals. Finally, virus transcriptomics revealed that both RaHV3 and BfHV1 had relatively high expression of a putative immunomodulating gene predicted to encode a decoy receptor for tumor necrosis factor in the skin of the infected hosts. Thus, the comparable lesions in infected frogs and toads appear to reflect a concerted epidermal and viral cycle, with presumptive involvement of signaling and gene remodeling host and immunomodulatory viral genes.


Author(s):  
John Shaheen ◽  
Austin B Mudd ◽  
Thomas G H Diekwisch ◽  
John Abramyan

Abstract Extant anurans (frogs and toads) exhibit reduced dentition, ranging from a lack of mandibular teeth to complete edentulation, as observed in the true toads of the family Bufonidae. The evolutionary timeline of these reductions remains vague due to a poor fossil record. Previous studies have demonstrated an association between the lack of teeth in edentulous vertebrates and the pseudogenization of the major tooth enamel gene amelogenin (AMEL) through accumulation of deleterious mutations and the disruption of its coding sequence. In the present study we have harnessed the pseudogenization of AMEL as a molecular dating tool to correlate loss of dentition with genomic mutation patterns during the rise of the family Bufonidae. Specifically, we have utilized AMEL pseudogenes in three members of the family as a tool to estimate the putative date of edentulation in true toads. Comparison of AMEL sequences from Rhinella marina, Bufo gargarizans and Bufo bufo, with nine extant, dentulous frogs, revealed mutations confirming AMEL inactivation in Bufonidae. AMEL pseudogenes in modern bufonids also exhibited remarkably high 86–93% sequence identity among each other, with only a slight increase in substitution rate and relaxation of selective pressure, in comparison to functional copies in other anurans. Moreover, using selection intensity estimates and synonymous substitution rates, analysis of functional and pseudogenized AMEL resulted in an estimated inactivation window of 46-60 MYA in the lineage leading to modern true toads, a timeline that coincides with the rise of the family Bufonidae.


Author(s):  
Shi-wen Zhou ◽  
Jing-yu Quan ◽  
Zi-wei Li ◽  
Ge Ye ◽  
Zhuo Shang ◽  
...  

2006 ◽  
Vol 454 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Nadja Møbjerg ◽  
Andreas Werner ◽  
Sofie M. Hansen ◽  
Ivana Novak

2016 ◽  
Vol 94 (12) ◽  
pp. 829-836 ◽  
Author(s):  
B.J. Klüg-Baerwald ◽  
L.E. Gower ◽  
C.L. Lausen ◽  
R.M. Brigham

Winter activity of bats is common, yet poorly understood. Other studies suggest a relationship between winter activity and ambient temperature, particularly temperature at sunset. We recorded echolocation calls to determine correlates of hourly bat activity in Dinosaur Provincial Park, Alberta, Canada. We documented bat activity in temperatures as low as −10.4 °C. We observed big brown bats (Eptesicus fuscus (Palisot de Beauvois, 1796)) flying at colder temperatures than species of Myotis bats (genus Myotis Kaup, 1829). We show that temperature and wind are important predictors of winter activity by E. fuscus and Myotis, and that Myotis may also use changes in barometric pressure to cue activity. In the absence of foraging opportunity, we suggest these environmental factors relate to heat loss and thus the energetic cost of flight. To understand the energetic consequences of bat flight in cold temperatures, we estimated energy expenditure during winter flights of E. fuscus and little brown myotis (Myotis lucifugus (Le Conte, 1831)) using species-specific parameters. We estimated that winter flight uses considerable fat stores and that flight thermogenesis could mitigate energetic costs by 20% or more. We also show that temperature-dependent interspecific differences in winter activity likely stem from differences between species in heat loss and potential for activity–thermoregulatory heat substitution.


Sign in / Sign up

Export Citation Format

Share Document