The Measurement Uncertainty of Single-Number Quantities for Rating the Impact Sound Insulation of Concrete Floors

2014 ◽  
Vol 100 (4) ◽  
pp. 640-648 ◽  
Author(s):  
Mikko Kylliäinen
Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 587
Author(s):  
Sin-Tae Kim ◽  
Hyun-Min Cho ◽  
Myung-Jun Kim

In Korean residential buildings, floor impact sounds were reduced over the past few decades mainly through a floating floor system. However, ceiling constructions for impact sound reduction have not been applied actively because of a lack of useful information. This study focuses on the effects of wall-to-wall supported ceilings (WSC), which are designed with construction discontinuities between concrete slabs and ceilings, and the damping caused by porous absorbers for impact sound insulation. To examine the impact sound insulation according to ceiling conditions, measurements were performed in 25 floor–ceiling assemblies. The results indicate that ceiling treatment is mostly useful in reducing the floor impact sound. The floor impact sound owing to the WSC decreased by 2–7 dB and 2–8 dB in terms of the single number quantity for the tapping machine and rubber balls, respectively, compared with representative existing housing constructions wherein ceilings were attached on wooden sticks. Furthermore, the reduction effect of the WSC appeared to be more profound when it was applied to the floor–ceiling assembly with poor impact sound insulation. Thus, the WSC can be used to enhance the impact of sound insulation of existing housings without major repairs of floor structural layers.


2016 ◽  
Vol 24 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Anders Homb ◽  
Catherine Guigou-Carter ◽  
Andreas Rabold

Wooden building systems, including cross-laminated timber elements, are becoming more common. The last few years have seen new developments and documentation of innovative types of cross-laminated timber floor assemblies. Regarding impact sound associated to walking persons, running or jumping children, such floor assemblies can be regarded as a weak part. So far, there are no reliable standardized calculation models available, for prediction of impact sound in the entire frequency range. Therefore the design is always based upon previous experiences and available measurements. This article presents the results of a number of well controlled sound insulation measurements of cross-laminated timber/massive wood floor constructions conducted in laboratories. The collection of data and results analysis highlight some basic phenomena. For instance, how structural differences related to the grouping of the constructions change the frequency distribution of the impact sound level and the single number quantities. Another significant result is the influence of the dynamic stiffness of the resilient interlayer of floating floor systems and the mass per unit area of the floors. Based on this analysis, the aim is to identify similarities and carry out simplifications. The data will be further processed and used in the development of prediction models and optimization process of cross-laminated timber floor assemblies.


1994 ◽  
Vol 33 (04) ◽  
pp. 390-396 ◽  
Author(s):  
J. G. Stewart ◽  
W. G. Cole

Abstract:Metaphor graphics are data displays designed to look like corresponding variables in the real world, but in a non-literal sense of “look like”. Evaluation of the impact of these graphics on human problem solving has twice been carried out, but with conflicting results. The present experiment attempted to clarify the discrepancies between these findings by using a complex task in which expert subjects interpreted respiratory data. The metaphor graphic display led to interpretations twice as fast as a tabular (flowsheet) format, suggesting that conflict between earlier studies is due either to differences in training or to differences in goodness of metaphor, Findings to date indicate that metaphor graphics work with complex as well as simple data sets, pattern detection as well as single number reporting tasks, and with expert as well as novice subjects.


2018 ◽  
Vol 39 (2) ◽  
pp. 196-210 ◽  
Author(s):  
Barny Evans ◽  
Sabbir Sidat

This paper is an investigation into the issues around how we calculate CO2 emissions in the built environment. At present, in Building Regulations and GHG Protocol calculations used for buildings and corporate CO2 emissions calculations, it is standard to use a single number for the CO2 emission factor of each source. This paper considers how energy demand, particularly electricity at different times of the day, season and even year can differ in terms of its CO2 emissions. This paper models three different building types (retail, office and home) using standard software to estimate a profile of energy demand. It then considers how CO2 emissions calculations differ between using the single standard emissions factor and using an hourly emissions factor based on real electrical grid generation over a year. The paper also examines the impact of considering lifetime emissions factors rather than one-year factors using UK government projections. The results show that there is a significant difference to the analysis of benefit in terms of CO2 emissions from different measures – both intra- and inter-year – due to the varying CO2 emissions intensity, even when they deliver the same amount of net energy saving. Other factors not considered in this paper, such as impact on peak generation and air quality, are likely to be important when considering whole-system impacts. In line with this, it is recommended that moves are made to incorporate intra- and inter-year emissions factor changes in methodologies for calculating CO2 emissions. (This is particularly important as demand side response and energy storage, although generally accepted as important in the decarbonisation of the energy system at present will show as an increase in CO2 emissions when using a single number.) Further work quantifying the impact on air quality and peak generation capacity should also be considered. Practical application: This paper aims to help practitioners to understand the performance gap between how systems need to be designed in order to meet regulations compared to how buildings perform in reality – both today and in the future. In particular, it considers the use of ‘real-time’ carbon factors in order to attain long-term CO2 reductions. This methodology enables decision makers to understand the impacts of different energy reduction technologies, considering each of their unique characteristics and usage profiles. If implemented, the result is a simple-to-use dataset which can be embedded into the software packages already available onto the market which mirrors the complexity of the electricity grid that is under-represented through the use of a static carbon figure.


2013 ◽  
Vol 649 ◽  
pp. 277-280
Author(s):  
Petra Berková ◽  
Pavel Berka

Through the use of a spectral analysis of the source of noise – person’s movement over the ceiling construction – it was found out that in this kind of noise distinctive low-frequency tone components occur (31,5 - 40 Hz) which is beyond the evaluation area of the impact sound insulation of the ceiling construction, s. [2], [3].


Author(s):  
Maria Cristina Dijmarescu

Destructive and non-destructive testing of materials present a rapid expansion given by the increase in market demand caused by the desire to obtain an increasingly better quality of products. The continuous increase in quality demands leads directly to the need to implement and modernize the techniques, methods, and equipment used for quality control. Consequently, the need for product testing services has a rapid growth. This paper presents the strength and weaknesses of implementing IT tools for the estimation of the measurement uncertainty in testing laboratories and the impact of these tools on the economic part


Sign in / Sign up

Export Citation Format

Share Document