Impact sound insulation of cross-laminated timber/massive wood floor constructions: Collection of laboratory measurements and result evaluation

2016 ◽  
Vol 24 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Anders Homb ◽  
Catherine Guigou-Carter ◽  
Andreas Rabold

Wooden building systems, including cross-laminated timber elements, are becoming more common. The last few years have seen new developments and documentation of innovative types of cross-laminated timber floor assemblies. Regarding impact sound associated to walking persons, running or jumping children, such floor assemblies can be regarded as a weak part. So far, there are no reliable standardized calculation models available, for prediction of impact sound in the entire frequency range. Therefore the design is always based upon previous experiences and available measurements. This article presents the results of a number of well controlled sound insulation measurements of cross-laminated timber/massive wood floor constructions conducted in laboratories. The collection of data and results analysis highlight some basic phenomena. For instance, how structural differences related to the grouping of the constructions change the frequency distribution of the impact sound level and the single number quantities. Another significant result is the influence of the dynamic stiffness of the resilient interlayer of floating floor systems and the mass per unit area of the floors. Based on this analysis, the aim is to identify similarities and carry out simplifications. The data will be further processed and used in the development of prediction models and optimization process of cross-laminated timber floor assemblies.

2021 ◽  
Vol 263 (1) ◽  
pp. 5203-5215
Author(s):  
Jianhui Zhou ◽  
Zijian Zhao

Mass timber buildings are gaining increasing popularity as a sustainable alternative to concrete and steel structures. Mass timber panels, especially cross-laminated timber (CLT), are often used as floors due to their dry and fast construction. CLT has poor impact sound insulation performance due to its lightweight and relatively high bending stiffness. Floating concrete toppings are often applied to increase both the airborne and impact sound insulation performance. However, the impact sound insulation performance of floating concrete toppings on CLT structural floors is affected by both the concrete thickness and resilient interlayer. This study investigated the efficiency of both continuous and discrete floating floor assemblies through mock-up building tests using small-scale concrete toppings according to ASTM E1007-16. It was found that the improvements by continuous floating floor assemblies are dependent on the concrete thicknesses and dynamic stiffness of resilient interlayers. The improvements cannot be well predicted by the equations developed for concrete structural floors. The highest apparent impact sound insulation class (AIIC) achieved with continuous floating floor assemblies in this study was 53 dBA, while that of the discrete floating floor assemblies was up to 62 dBA. The discrete floating floor solution showed great potential for use in mass timber buildings due to the high performance with thinner concrete toppings.


2014 ◽  
Vol 899 ◽  
pp. 491-494 ◽  
Author(s):  
Lenka Autratová ◽  
Petr Hlavsa

Impact sound transmission loss is the ability of structure to absorb impact noise, which is formed by mechanical impulses (steps, falls). The impact noise is then spread to the elements connected to the floor structure, such as the ceiling and surrounding wall. Dynamic stiffness is one of the important parameters that affect the sound insulation of ceiling structures with floating floors. The article deals with the optimal design of acoustic insulation to the floor composition, combining different materials of various thicknesses with various characteristic properties.


2020 ◽  
pp. 1351010X2096615
Author(s):  
Anders Homb ◽  
Simone Conta ◽  
Christoph Geyer ◽  
Niko Kumer

The industrialisation of timber buildings has improved strongly in recent years. When long span is required, timber hollow-box floor elements are increasingly used due to their structural performance. The aim of this paper is to assess the acoustic performance of timber hollow-box floors, determine the governing parameters and identify the corresponding trends. We collected results from laboratory measurements covering both airborne and impact sound insulation from four different laboratories covering a wide range of application. Data include the bare floor constructions and their combination with different floating floors including both lightweight solutions and hybrid solution. We performed the analysis focusing on following parameters: element stiffness, element mass per unit area, dynamic stiffness of the resilient layer, cavity filling and floating floor material. We present the collected data both frequency-dependent and as single number quantities. General trends and features are identified in the frequency-dependent diagrams. A further detailed analysis is based on the single number quantities. It includes a general relationship between element mass per unit area and given requirements for R’W + C50-5000 and L’n,w + CI,50-2500. Furthermore, diagrams are presented illustrating the dependence of impact sound insulation numbers on the cavity filling, the dynamic stiffness of the resilient layer and the type of material used for the floating floor. The additional mass in the cavity improves both airborne and impact sound insulation by minimum 10 dB. This, combined with a floating floor, allows the fulfilment of a wide range of requirements.


2021 ◽  
Vol 263 (1) ◽  
pp. 5595-5599
Author(s):  
Davi Akkerman ◽  
Paola Weitbrecht ◽  
Mariana Shieko ◽  
Marcel Borin ◽  
Leonardo Jacomussi

Considering Impact sound level requirements accomplishment in Brazil, floating floors are still considered as an inviable solution for building companies due to the implications in the total cost of building, mainly for social housing. Alternative and sometimes cheaper solutions are those undertaken in the receiver room. However, the lack of laboratory and field tests on the acoustic performance of this type of system is still a barrier for acoustic designing in Brazil. The aim of this paper is to study and validate different constructive solutions developed jointly with building companies for improving the impact sound insulation performance on the receiving room of new Brazilian housing constructions.


2020 ◽  
Vol 161 ◽  
pp. 107173 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Xiamin Hu ◽  
Hongwei Gong ◽  
Jing Zhang ◽  
Zhicheng Lv ◽  
...  

2021 ◽  
Vol 263 (6) ◽  
pp. 267-274
Author(s):  
Cheng Qian ◽  
Lin Hu ◽  
Christian Dagenais ◽  
Sylvain Gagnon

The National Building Code of Canada 2015 stipulates the minimum requirements of the airborne sound insulation transmission through common interior walls and ceiling/floor assemblies. The required minimum Apparent Sound Transmission Class (ASTC) is 47 in Canada, whereas the Impact Insulation Class (IIC) for floors is recommended to be higher than 55. For many years, significant efforts were made to develop sound insulation prediction models or tools to predict the sound insulation performance of wall and floor/ceiling assemblies at the design phase in order to meet the requirements and the recommendations made by codes. However, today few models can provide a reliable acoustics design tool. In this document, three prediction tools thought to be practically useful are presented and evaluated. Between these three prediction tools, one is an analytical model of the Insul software while the other two are empirical models developed by the National Research Council of Canada and the American Wood Council. This paper compared the STC and IIC ratings of wood wall and floor assemblies estimated by these three models and verified them by the measured STC and IIC ratings. This work aims at providing an idea for readers to choose a suitable design tool to proceed with their acoustic designs.


2013 ◽  
Vol 649 ◽  
pp. 101-104 ◽  
Author(s):  
Monika Rychtáriková ◽  
Bert Roozen ◽  
Herbert Müllner ◽  
Mathias Stani ◽  
Vojtech Chmelík ◽  
...  

When assessing the sound insulation quality of buildings constructions, policy makers and investors typically demand for single number ratings and sound insulation classes that allow for easy ranking of building products. Converting the full frequency content of a precisely measured or calculated structure into a single number, which takes into account all aspects of the insulation performance in a balanced way, is a challenging task. The recently proposed draft standard 717 proposes to take into account also frequencies below 100 Hz. This makes the single value rating even more complicated, since the transmission spectra R (dB) of walls can be qualitatively very different above and below 100 Hz, and even more, since, particularly at low frequencies, human hearing depends not only on frequency but also on the absolute sound level. This article presents a comparison between masonry and light-weight walls with different R value, in terms of the perception of loudness of typical living room, traffic noise and machinery noise transmitted through the walls. The effect of temporal and spectral features of the presented stimuli on loudness perception is analyzed.


2016 ◽  
Vol 851 ◽  
pp. 680-684
Author(s):  
Kyoung Woo Kim ◽  
A Yeong Jeong ◽  
Hye Kyung Shin ◽  
Jun Oh Yeon

Floor impact sound is one noise in apartment houses that cannot be avoided. In order to reduce floor impact sound, a floating floor system using resilient materials has been generally applied. Floor impact sound insulation performance of the floating floor system is dependent on the physical property (dynamic stiffness) of resilient materials. This study investigated the effect of temperature changes on resilient materials used in the floating floor system and on dynamic stiffness. Ethylene vinyl acetate (EVA) and expanded polystyrene (EPS) were used as resilient materials, and dynamic stiffness was measured during three stages of temperature change condition. The measurement result showed that as the temperature decreased, dynamic stiffness also increased. This study also analyzed the effect of changes in outdoor temperature on the heavyweight impact sound level with respect to concrete buildings with wall slabs. The floor impact sound level tended to increase during the winter season, when the outdoor temperature was low.


2020 ◽  
Vol 68 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Barry Marshall Gibbs ◽  
Michel Villot

This article coincides with recent publications of international standards, which provide methods of predicting the performance of both heavyweight and lightweight buildings in terms of airborne sound insulation and impact sound isolation, from the performance of individual elements such as walls and floors. The performances of the elements are characterized by the sound reduction index and the impact sound pressure level. To predict the sound pressure level due to vibrating sources (i.e., mechanical installations, water services and other appliances), source data are required in a form appropriate as input for prediction models similar to the above, i.e., as equivalent single quantities and frequency band-averaged values. Three quantities are required for estimating the structure-borne power for a wide range of installation conditions: activity (the free velocity or the blocked force of the operating source), source mobility (or the inverse, impedance) and receiver mobility (or impedance) of the connected building element. Methods are described for obtaining these source quantities, including by using laboratory reception plates. The article concludes with a proposed database, based on laboratory measurements and simple mobility calculations, which provides a practical approach to predicting structureborne sound in buildings.


Sign in / Sign up

Export Citation Format

Share Document