Effects of Wall-to-Wall Supported Ceilings on Impact Sound Insulation for Use in Residential Buildings

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 587
Author(s):  
Sin-Tae Kim ◽  
Hyun-Min Cho ◽  
Myung-Jun Kim

In Korean residential buildings, floor impact sounds were reduced over the past few decades mainly through a floating floor system. However, ceiling constructions for impact sound reduction have not been applied actively because of a lack of useful information. This study focuses on the effects of wall-to-wall supported ceilings (WSC), which are designed with construction discontinuities between concrete slabs and ceilings, and the damping caused by porous absorbers for impact sound insulation. To examine the impact sound insulation according to ceiling conditions, measurements were performed in 25 floor–ceiling assemblies. The results indicate that ceiling treatment is mostly useful in reducing the floor impact sound. The floor impact sound owing to the WSC decreased by 2–7 dB and 2–8 dB in terms of the single number quantity for the tapping machine and rubber balls, respectively, compared with representative existing housing constructions wherein ceilings were attached on wooden sticks. Furthermore, the reduction effect of the WSC appeared to be more profound when it was applied to the floor–ceiling assembly with poor impact sound insulation. Thus, the WSC can be used to enhance the impact of sound insulation of existing housings without major repairs of floor structural layers.

Buildings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Łukasz Nowotny ◽  
Jacek Nurzyński

Lightweight floors are in line with a sustainable construction concept and have become increasingly popular in residential buildings. The acoustic performance of such floors plays a pivotal role in the overall building quality rating. There is, however, no clear and complete method to predict their impact sound insulation. A new approximation method and new acoustic indicators—equivalent weighted normalized impact sound pressure levels for lightweight floors—are proposed and outlined in this article. The prediction procedure and indicator values were initially validated on the basis of laboratory measurements taken for different lightweight floors with the same well-defined floor covering. These preliminary analyses and comparisons show that the proposed method is promising and should be fully developed on the basis of further research.


2015 ◽  
Vol 752-753 ◽  
pp. 698-701
Author(s):  
Kyoung Woo Kim ◽  
Jun Oh Yeon ◽  
Kwan Seop Yang

Floating floor structures installed with resilient materials are commonly used to reduce sound from floor impacts. Resilient materials minimize the transmission of vibrations by absorbing shock vibrations occurring on the upper part. The floor impact sound reduction performance of resilient materials is related to the dynamic stiffness, which is a physical characteristic of materials. However, the dynamic stiffness varies according to the increase in the loading time of the load that is installed on the upper part of resilient materials. The dynamic stiffness values increase with an increase in the loading time; an increased dynamic stiffness value decreases the vibration reduction effect. The present study focuses on a floor structure installed with resilient materials, and identifies the degree of reduction in floor impact sound insulation performance with the elapse of time. The insulation of sound from lightweight impact sound decreased with the elapse of time, whereas the heavyweight impact sound did not show significant changes.


2015 ◽  
Vol 744-746 ◽  
pp. 1593-1596
Author(s):  
Shang You Wei ◽  
Xian Feng Huang ◽  
Zhi Xiang Zhuang ◽  
Jun Xin Lan

In this paper, a theoretical model to evaluate impact sound transmission through a homogeneous wall is proposed. The model which is based on the Statistical Energy Analysis framework exhibits a system with room-wall-room. For the purpose to explore the mechanism of impact sound transmission through a wall, the impact sound reduction index between two rooms are predicted. Meanwhile, the variation of impact sound reduction index with the walls properties are also taken into account. The results reveal that the density, elastic modulus and thickness of a homogeneous wall have diverse effects on its impact sound insulation and can be chosen adequately to achieve ideal insulation values.It provides an approach to optimize impact sound insulating properties of the walls.


2021 ◽  
Vol 23 (1) ◽  
pp. 77
Author(s):  
Bondan Dwisetyo ◽  
Maharani Ratna Palupi ◽  
Fajar Budi Utomo ◽  
Chery Chaen Putri ◽  
Dodi Rusjadi ◽  
...  

<p>The implementation of laboratory measurement of airborne sound insulation based on ISO and ASTM standards was carried out at SNSU BSN. The aim of this work to realize the measurement of airborne sound insulation for several sample tests, where the procedure of the test is performed according to the updated standard ISO 10140 and ASTM E90. Besides, the single number rating also is determined based on ISO 717-1 and ASTM E413. This measurement has been conducted in the two reverberation rooms using pressure method consist of measuring the sound pressure level, measuring the reverberation time, obtaining the sound reduction index (R) or sound transmission loss (STL), and determination of a single-number ratings of the samples test. From the results, some parameter requirements such as the frequency range and the rounding procedure of R or STL influence the measurement result slightly. Subsequently, the significant difference is obtained for the determination of single number rating in the shifting procedure of the reference curve.</p>


2021 ◽  
Vol 263 (6) ◽  
pp. 778-786
Author(s):  
Maedot S. Andargie ◽  
Marianne Touchie ◽  
William O'Brien

Multi-unit residential building (MURB) occupants often express dissatisfaction with their suites' acoustic conditions despite existing building acoustic standards and regulations as well as growing research on noise control and building acoustics. Reasons for this include the lack of proper characterization of acoustic comfort in MURBs and lack of comprehensive and stringent regulations. To better understand factors that impact acoustic comfort and explore strategies to improve the acoustic performance of MURBs, investigations of acoustic conditions were carried out. This work presents the results of the investigations which include subjective and objective evaluations of acoustic conditions in two MURBs. Impact sound insulation measurements using both a tapping machine and a rubber ball as well as 24-hour indoor noise monitoring were carried out in unoccupied suites. An online survey was then used to collect subjective assessments of the noise conditions in the buildings and the effects on occupants' comfort post occupancy. Results of the data analysis suggest that occupants are more sensitive to low-frequency impact sounds than mid- and high-frequency impact noise.


2021 ◽  
Vol 263 (4) ◽  
pp. 1989-1998
Author(s):  
Alessia Frescura ◽  
Pyoung Jik Lee ◽  
Jeong-Ho Jeong ◽  
Yoshiharu Soeta

The present study aimed to explore relationships between physiological and subjective responses to indoor sounds. Specifically, The electroencephalograms (EEG) responses to neighbour sounds in wooden dwellings were investigated. Listening tests were performed to collect EEG data in distinct acoustics scenarios. Experimental work was carried out in a laboratory with a low background noise level. A series of impact and airborne sounds were presented through loudspeakers and subwoofer, while participants sat comfortably in the simulated living room wearing the EEG headset (B-alert X24 system). The impact sound sources were an adult walking and a child running recorded in a laboratory equipped with different floor configurations. Two airborne sounds (a live conversation and a piece of classical piano music) were digitally filtered to resemble good and poor sound insulation performances of vertical partitions. The experiment consisted of two sessions, namely, the evaluation of individual sounds and the evaluation of the combined noise sources. In the second session, pairs of an impact and an airborne sound were presented. During the listening test, electroencephalography alpha reactivity (α-EEG) and electroencephalography beta reactivity (β-EEG) were monitored. In addition, participants were asked to rate noise annoyance using an 11-point scale.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Elwaleed Awad Khidir ◽  
Zambri Harun ◽  
Mohd Jailani Mohd Nor ◽  
Muhamad Razi

This article presents an assessment for the airborne sound insulation provided by single glazed panels. The glazed panels were glass, acrylic and polycarbonate with a thickness of 4 mm. The experiments were conducted in a transmission loss facility consisting of semi anechoic and reverberation chambers. The panels were subjected to airborne sound and the data collected. Glass, acrylic and polycarbonate panel absorb noise most effectively above 500 Hz with the absorption peaks at 1000 Hz. The single number sound reduction index (RW) for glass, polycarbonate and acrylic were 41 dB, 38 dB and 37 dB, respectively. This could be attributed mainly to the material density which is higher for the glass. Keywords: Sound transmission loss; glazing; insulation; weighted index


Author(s):  
Тарасенко ◽  
Viktoriya Tarasenko ◽  
Дегтев ◽  
Ilya Degtev

Currently, the problem of sound insulation of protecting designs is quite acute in existing housing stock and newly constructed buildings. Modern wall materials are often used in the model solutions to the barriers without needed additional insulation. In the construction of residential buildings of the increased comfort standard solutions wall enclosing structures should be revised to take account of additional sound insulation ensure the comfort of stay.


Sign in / Sign up

Export Citation Format

Share Document