scholarly journals The Effects of Oil Film Shape on Piston Ring and Liner Tribology Under Mixed Lubrication

2021 ◽  
Vol 14 (4) ◽  
pp. 436-447
Author(s):  
Abbas Razavykia ◽  
Cristiana Delprete ◽  
Eugenio Brusa ◽  
Yaser Hosseini
1999 ◽  
Vol 123 (1) ◽  
pp. 219-223 ◽  
Author(s):  
Ozgen Akalin ◽  
Golam M. Newaz

A bench friction test system for piston ring and liner contact, which has high stroke length and large contact width has been used to verify the analytical mixed lubrication model presented in a companion paper (Part 1). This test system controls the speed, temperature and lubricant amount and records the friction force, loading force, crank angle signal and contact temperature data simultaneously. The effects of running speed, applied normal load, contact temperature and surface roughness on friction coefficient have been investigated for conventional cast-iron cylinder bores. Friction coefficient predictions are presented as a function of crank angle position and results are compared with bench test data. Analytical results correlated well with bench test results.


Friction ◽  
2016 ◽  
Vol 4 (4) ◽  
pp. 335-346 ◽  
Author(s):  
Zhinan Zhang ◽  
Jun Liu ◽  
Youbai Xie

Author(s):  
Yibin Guo ◽  
Wanyou Li ◽  
Dequan Zou ◽  
Xiqun Lu ◽  
Tao He

In this paper a mixed lubrication model considering lubricant supply conditions on cylinder bore has been developed for the piston ring lubrication. The numerical procedures of both fully flooded and starved lubrication were included in the model. The lubrication equations and boundary conditions at the end of strokes were discussed in detail. The effects of piston ring design parameters, such as ring face profile and ring tension, on oil film thickness, friction force and power loss under fully flooded and starved lubrication conditions due to available lubricant supply on cylinder bore were studied. The simulation results show that the oil available in the inlet region of the oil film is important to the piston ring friction power loss. With different ring face crown heights and tensions, the changes of oil film thickness and friction force were apparent under fully flooded lubrication, but almost no changes were found under starved lubrication except at the end of a stroke. In addition, the oil film thickness and friction force were affected evidently by the ring face profile offsets under both fully flooded and starved lubrication conditions, and the offset towards the combustion chamber made a large contribution to forming thicker oil film during the expansion stroke. So under different lubricant supply conditions on the cylinder bore, the ring profile and tension need to be adjusted to reduce the friction and power loss. Moreover, the effects of lubricant viscosity, surface composite roughness, and engine operating speed on friction force and power loss were also discussed.


Author(s):  
Yang Hu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Jiazheng Fan

The cylinder liner surface finish, which is commonly produced using the honing technique, is an essential factor of engine performance. The characteristics of the texture features, including the cross-hatch angle, the plateau roughness and the groove depth, significantly affect the performance of the ring pack–cylinder liner system. However, due to the influence of the honed texture features, the surface roughness of the liner is not subject to Gaussian distribution. To simulate the mixed lubrication performance of the ring–liner system with non-Gaussian roughness, the combination of a two-scale homogenization technique and a deterministic asperities contact method is adopted. In this study, a one-dimensional homogenized mixed lubrication model is established to study the influence of groove parameters on the load-carrying capacity and the frictional performance of the piston ring–liner system. The ring profile, plateau roughness, and operating conditions are taken into consideration. The main findings are that for nonflat ring, shallow and wide groove textures are beneficial for friction reduction, and there exists an optimum groove density that makes the friction minimum; for flat ring, wide and sparse grooves help improving the tribological performance, and there exists an optimum groove depth that makes the friction minimum.


1983 ◽  
Vol 26 (3) ◽  
pp. 325-332 ◽  
Author(s):  
Shoichi Furuhama ◽  
Chikashi Asahi ◽  
Masaru Hiruma
Keyword(s):  

Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


1999 ◽  
Vol 123 (1) ◽  
pp. 211-218 ◽  
Author(s):  
Ozgen Akalin ◽  
Golam M. Newaz

An axi-symmetric, hydrodynamic, mixed lubrication model has been developed using the averaged Reynolds equation and asperity contact approach in order to simulate frictional performance of piston ring and cylinder liner contact. The friction force between piston ring and cylinder bore is predicted considering rupture location, surface flow factors, surface roughness and metal-to-metal contact loading. A fully flooded inlet boundary condition and Reynolds boundary conditions for cavitation outlet zone are assumed. Reynolds boundary conditions have been modified for non-cavitation zones. The pressure distribution along the ring thickness and the lubricant film thickness are determined for each crank angle degree. Predicted friction force is presented for the first compression ring of a typical diesel engine as a function of crank angle position.


Sign in / Sign up

Export Citation Format

Share Document