scholarly journals THE INFLUENCE OF THE TAMPED OUT FOUNDATION ON THE CALCULABLE STRENGTH OF THE FOOTING BASE/PLŪKTINIO PAMATO FORMOS ĮTAKA PADO PAGRINDO SKAIČIUOJAMAJAM STIPRUMUI

2001 ◽  
Vol 7 (3) ◽  
pp. 197-200
Author(s):  
Antanas Alikonis

Foundations, erected in the tamped out trenches, are distinguished for a greater bearing capacity of the base in comparison with the foundations which are erected in the dug out trenches. They are also economic in respect of energy and material. The building practice shows that tamped out, that is erected in tamped out trenches, foundations can be successfully used in many types of soil. The tamped out foundation of the truncated pyramid form can bear the bigger part of the loading by its sides because of the leaning sides of the foundation and the foundation of the cylindrical form can bear for smaller part of the loading because its sides are perpendicular. The bearing capacity of the sides of the tamped out foundation is calculated using theoretical formulas which are rather complicated and it requires figure meaning of Geotechnical features of soil. The author investigated theoretically the distribution of the effecting strength between the bottom and the tamped out foundation. The strength whitch falls on the bottom of the foundation was used to define the calculable strength of the bottom of the foundation. According to the strength that falls on the bottom of the foundation the tension calculated when n=1,2,3% which in considered the calculable strength of the bottom of the foundation. The calculable strength of the bottom of the base of the foundation is connected with the conic strength of natural soil qc, which is got by statical serenading. The experiments were carried out in sand soils the conic strength of which was 4–6MPa. According to the results of the experimental research the formula was deduced to define the calculable strength of the bottom of the tamped out foundation of the truncated pyramid shape. The experiments were carried out trying static loading on 6 experimental foundations in sand soils the conic strength of which was 4–8MPa. During the experiment the calculable strength of the bottom of the tamped out foundation of the cylindrical form was investigated. Analyzing the results of these experiments the strength which falls on the bottom of the foundation was distinguished. The tension on the plane of the bottom of the foundation was defined according to the settlings of the foundation form loading. The settlings of the foundation in this situation was 1,2,3% of the foundation diameter. These tensions are considered the calculable strength of the base of the bottom of the foundation. According to the results of the experimental research the formula was deduced to define the calculable strength of the bottom of the tamped out foundation of the cylindrical form. This calculable strength was defined according to the natural sand soil conic strength and accepted ratio of settling and the diameter of the foundation. The results of the reseach show that the calculable strength of the bottom of the tamped out foundation of the cylindrical form which is erected in sand soils is much bigger that the calculable strength of the tamped out foundation of the truncated pyramid shape. The figure meaning of the calculable strength of the bottom of the base of the tamped out foundation depends on the form of the foundation, on the conic strength of the soil, which is got by statical sounding of natural soil and it depends on the accepted percentage ratio of the settling and the diameter of the foundation.

2013 ◽  
Vol 482 ◽  
pp. 7-10
Author(s):  
Jian Hua Cui ◽  
Chuan Yang Weng ◽  
Yun Lin Liu

Through the experiments of four concrete composite slabs under static loading to compare their flexural properties (deflection, bearing capacity, failure mode), this paper discusses the influence of composite slabs flexural behavior on different length of additional bars and sectional effective height. The results showed that they will improve the bearing capacity effectively by reasonably increasing the sectional effective height and controlling the length of additional bars.


2013 ◽  
Vol 438-439 ◽  
pp. 1414-1418
Author(s):  
Wei Ding ◽  
Qing Liu ◽  
Bing Yu Wang ◽  
Kang Kang Sun ◽  
Feng Tao Sui

This paper determines the bearing capacity of pile and shaft resistance by the curve match method of high strain dynamic testing. By the comparison of bearing capacity of pile between the testing results of static loading and dynamic high strain, the reliability and surveying precision of the curve match method is analyzed, and the error sources and reasons are explored, to reasonably determine the design parameters of pile foundation engineering.


2011 ◽  
Vol 255-260 ◽  
pp. 255-258
Author(s):  
Xin Tang Wang ◽  
Hai Jiang Wang ◽  
Ming Zhou ◽  
Yao Ji

For study of the post-fire characteristics of the profiled sheet-ceramsite concrete composite floor (noted as PSCCF) subjected to fire load, the experimental research on post-fire bearing capacity of a PSCCF after fire is carried out. Based on the experimental results, effect of the fire on post-fire bearing capacity of the profiled sheet-ceramsite concrete composite floor is discussed, and the failure phenomenon and mechanism are analyzed. It is shown that the failure form of the profiled sheet-ceramsite concrete composite floor after fire has great change compared with the floor not subjected to fire load, but the composite floor subjected to fire still exhibits higher bending capacity, and the ultimate value of the equivalent distributed load is up to 25kN/m2, which may be used as basis of strengthening and repairing of the profiled sheet-ceramsite concrete composite floor after exposure to fire.


2011 ◽  
Vol 366 ◽  
pp. 272-275
Author(s):  
Wei Jun Yang ◽  
Ying Jie Zhou ◽  
Cong Cong Meng

In order to study the force performance of the short compression column of the Shale ceramisite concrete, the article have research the axis and eccentric of the eight Shale concrete rectangular short columns((l0/b≤4). As the article reach the component is divided into damage caused by pressure and destruction of tension, while it’s contingency rather than the ordinary concrete and plasticity development are shorter ; the bearing capacity of normal section by shale ceramisite Concrete is greater than specification value, it satisified with the requirement of structural load-bearing; Shale concrete short column under pressure and the strain meet a certain section of the plane-section assumption in the process of loading.


2000 ◽  
Vol 34 (12) ◽  
pp. 2446-2452 ◽  
Author(s):  
Teresa B. Culver ◽  
Roberta A. Brown ◽  
James A. Smith
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document