Experimental Study about Bearing Capacity and Deformation on Concrete Composite Slabs with Additional Bars

2013 ◽  
Vol 482 ◽  
pp. 7-10
Author(s):  
Jian Hua Cui ◽  
Chuan Yang Weng ◽  
Yun Lin Liu

Through the experiments of four concrete composite slabs under static loading to compare their flexural properties (deflection, bearing capacity, failure mode), this paper discusses the influence of composite slabs flexural behavior on different length of additional bars and sectional effective height. The results showed that they will improve the bearing capacity effectively by reasonably increasing the sectional effective height and controlling the length of additional bars.

2019 ◽  
Vol 22 (11) ◽  
pp. 2476-2489 ◽  
Author(s):  
Pengjiao Jia ◽  
Wen Zhao ◽  
Yongping Guan ◽  
Jiachao Dong ◽  
Qinghe Wang ◽  
...  

This work presents an experimental study on the flexural behavior of steel tube slab composite beams subjected to pure bending. The main design elements considered in the work are the flange thickness, reinforcement ratio of high strength bolts, spacing between the tubes, and transverse patterns of the tube connections. Based on nine flexural experiments on simply supported steel tube slab specimens, the failure process and crack development in steel tube slab specimens, and their load–deflection curves are investigated. The results of the laboratory tests show that the welding of the bottom flange significantly improves the flexural capacity of the steel tube slab structure. In addition, a lower concrete’s compressive strength improves the ductility of the steel tube slab specimens. Moreover, the flexural capacities predicted from the design guidelines are in good agreement with the experimental test results. Finally, based on the numerical simulations using the ABAQUS software, a numerical model is established to further investigate the effect of the additional parameters on the flexural capacity of steel tube slab structures. The numerical results suggested that the diameter of the steel bolts and the reinforcement ratio have a limited effect on the flexural bearing capacity of the steel tube slab beams, and the ultimate bearing capacity increases linearly along with increase in the diameter of the steel bolts and the reinforcement ratio in a certain range.


2014 ◽  
Vol 501-504 ◽  
pp. 954-958
Author(s):  
Wei Dong Sun ◽  
Xin Yu Niu

Composed wall with site laying reinforcing rib is composed of reinforced concrete rib, girtstrip and filling brickwork. This kind of wall is energy-saving, environmental-friendly and of good earthquake resistant performance. It is suitable to village building structure. In this paper, the load carrying capability and failure mode of this kind of composed wall under the effect of vertical load, the maximum bearing capacity of the wall and its influencing factors are mainly introduced.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaojun Zhou ◽  
Tingmin Mou ◽  
Hongyuan Tang ◽  
Bikun Fan

Based on the project of Modaoxi Bridge, an experimental study on the compressive behavior of ultrahigh strength concrete filled steel tube (UHSCFST) short column was conducted. A total of 9 UHSCFST specimens were tested, and the cube strength (fcu) of the core concrete reached 115.4 MPa. Main parameters were the confining factor (ξ=0.608, 0.919, and 1.015), steel ratio (α=14.67%, 20.02%, and 21.98%), and steel strength (fy = 349 MPa, 352 MPa, and 427 MPa). The axially loading test results showed that the visible damage of steel tube occurred under the ultimate load. The higher the confining effect, the less the damage features. And all specimens basically presented a drum-type failure mode. The confining effect of steel tube effectively changed the brittle failure mode of ultrahigh strength concrete (UHSC) and tremendously improved the load bearing capacity and ductility of specimens. Moreover, the higher the steel ratio and steel strength of the specimens, the stronger the confining effect. Meanwhile the excellent mechanical properties will be obtained. Also it is recommended that the UHSCFST prefers Q345 or above strength steel tube to ensure sufficient ductility, and the steel ratio should be more than 20%. Furthermore, the confining effect of steel tubes can improve the ultimate bearing capacity of the ultrahigh strength CFST short columns.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tiecheng Wang ◽  
Xiao Liu ◽  
Hailong Zhao

Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars.


2013 ◽  
Vol 16 (12) ◽  
pp. 2005-2017 ◽  
Author(s):  
Jingshu Zhang ◽  
Yuan Yao ◽  
Xuhong Zhou ◽  
Yuanlong Yang ◽  
Yanzhong Wang

2019 ◽  
Vol 9 (10) ◽  
pp. 1981 ◽  
Author(s):  
Jongho Park ◽  
Sungnam Hong ◽  
Sun-Kyu Park

In this study, to compare strengthening efficiency and flexural behaviors of textile- reinforced mortar (TRM) according to various types of strengthening methods without the textile being impregnated, ten specimens were tested. The results showed that TRM was beneficial for uniform distribution of cracks and increased the strengthening efficiency and load-bearing capacity, as textile reinforcement ratio and textile lamination increased and the mesh size of the textile decreased and mechanical end anchorage applied. However, the strengthening effect was shown obviously until the yield load considering structural safety and serviceability.


2011 ◽  
Vol 243-249 ◽  
pp. 1283-1287
Author(s):  
Xiao Ruan Song ◽  
Pei Ge Liu ◽  
Xiao Yun Zhang ◽  
Yu Ting Qu ◽  
Ji Min Xu

In this research, a kind of composite cement plates are utilized as permanent formworks, and poured concrete together to form composite slabs. Through static test of composite slabs with different bonding modes of interface between formwork and concrete, bearing capacity, deformability and cooperation states of concrete and composite formwork are studied. Through static test of composite slabs with splicing joints formworks at different positions, bond quality near the splicing joints are observed visually, stress nature and deformability variations resulted from different splicing joint positions of formwork are analyzed. And meanwhile, stress and deformability of the ordinary concrete slab without formwork is researched under the same conditions. Through above experiments, acting as a part of the slab, how composite formwork influence bearing capacity and deformability of the combined slab is investigated.


2019 ◽  
Vol 9 (17) ◽  
pp. 3468 ◽  
Author(s):  
Yongrui Wang ◽  
Junwu Xia ◽  
Renwei Ma ◽  
Bo Xu ◽  
Tonglei Wang

Modular buildings have the highest levels of precasting in the current building system. There are some defects in present modular connections, such as the difficulties of construction, the weakening of the bearing capacity of beams or columns, and damage to decorations. This paper presents an innovative modular connection with installed bolts in the columns. Two symmetrical monotonous static loading tests were conducted to explore the flexural behavior of the innovative connection. Meanwhile, the moment–rotation relations, destruction process, ultimate bearing capacity, stiffness classification and internal stress distribution were analyzed. The results showed that the specimen S1 with smaller diagonal stiffeners lost its bearing capacity due to the failure of the welding seam, and the extreme moment was 169 kN·m. The failure mode of S2 with large diagonal stiffeners was beam buckling, and the extreme moment was 209 kN·m. The stress of diagonal stiffeners and the join between the upper beam and stiffeners increased rapidly. Stiffeners can increase the stiffness and load-bearing capacity. The connection failures occurred on the beam or beam–column joints, while the connection between modules remained undamaged, which showed that the new connection has a good bearing capacity under the action of bending moment and pressure.


2011 ◽  
Vol 255-260 ◽  
pp. 198-203 ◽  
Author(s):  
Chayanon Hansapinyo

This paper presents an experimental study on the response of 18 concrete-filled cold-formed square hollow and double-C steel stub columns under cyclic and repeated loading. The test parameters were (1) infilled materials, i.e. No fill, concrete infilled and mortar infilled columns (2) cross sectional shape and dimension. The effect of lips in double-c section as inside stiffeners is presented. The cyclic tested results indicate the infilled columns possess higher bearing capacity, especially infilled materials with higher strength and non-compact section columns. However, there is no different in ultimate tensile. Moreover, the infilled columns showed larger area under post-yield hysteretic loops leading to better seismic performance. Failure of columns was modified in which the failure mode was shifted from the in-outward local buckling into the outward manner, consequently resulted to higher bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document